长虹 PT4206

等离子电视

维

修

手

册

目 录

第一章、	PP06 机芯规格特点和整机电路组成1
第二章、	长虹等离子电视 PT4206 的主要集成电路功能简介5
第三章、	长虹等离子电视 PT4206 整机信号流程分析 ······23
第四章、	长虹等离子电视 PT4206 主要集成块维修数据 ······37
第五章、	长虹等离子电视 PT4206 典型故障维修流程图 ······51
附:	一、长虹等离子电视 PT4206 装配图 1、装配图 2
	二、长虹等离子电视 PT4206接线图

第一章 PP06 机芯规格特点和整机组成

一、PP06 机芯技术规格:

一) PT4206 显示屏参数

目前,长虹等离子电视 PP06 机芯最主要的机型为 PT4206,下面的介绍均以 PT4206 为例。

PDP 屏分辨率	852×3(RGB)×480
显示颜色	16,777,216 种颜色
点距	1.095mm(水平)×1.110mm(垂直)
亮度	高亮度
对比度	高对比度
显示屏寿命	20000 小时
视角	上下: 160 / 左右: 160
典型响应时间	933mm (水平) ×533mm(垂直)

注:显示屏参数中亮度、对比度随使用的显示屏有所差异。PT4206 目前主要使用的显示屏有 SAMSUNG SDI 的 S42SD-YD04 和 S42SD-YD05。

二) 主要功能规格

	推荐输入格式	640×480/60Hz
		800×600/60Hz
D.0	输入格式不支持提示	有
PC	色温调节	有
	即插即用	支持
	图像位置调节	有
高清信号	1.11.44 > 14. 15	480P、576P、720P 、
(YPbPr)	支持输入格式	1080i
数字高清信号	士柱於入牧士	支持上述 PC 及高清
(DVI)	支持输入格式	信号格式
	支持图像制式	PAL/NTSC/SECAM
	支持伴音制式	D/K、I、B/G、M
视频	数字梳状滤波器	有
(含 S 视频)	3D 数字梳状器	有
	(NTSC)	
	运动补偿功能	有
	输出功率	2×5W
	音效处理	WOW
自 音頻	丽音/IGR	支持
曰 <i>沙</i> 火	视频/分量信号的音频	音频 左/右
	输入	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	PC/DVI 音频输入	音频 左/右
输入电压	220\	/~, 50Hz
整机额定功耗	小于	= 370W
待机功耗	小	于 3W

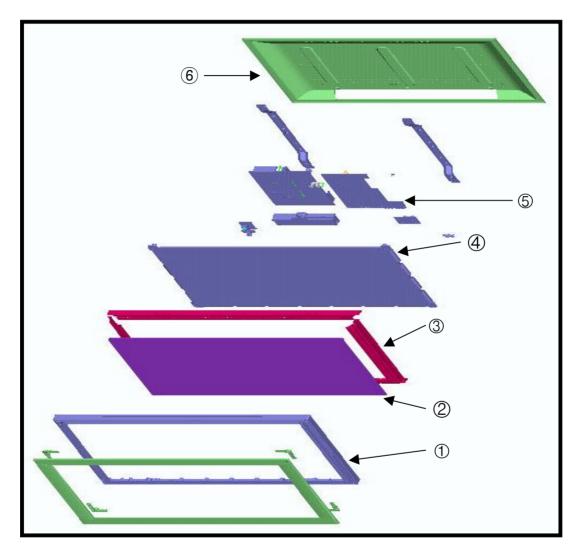
二、主要特点:

一)接口端子

RF 输入	一路(后置)
S端子输入	一路 (后置)
A/V 输入	RCA接口,一路(后置)
视频分量输入 (YCbCr)	RCA接口,一路(后置)
DTV 分量输入(YPbPr)	RCA接口,一路(后置)
VGA/SVGA 输入	高密度 D-SUB 15 芯连接器,一路(后置)
DVI 数字输入	一路(后置)
A/V 输出	RCA接口,一路(后置)

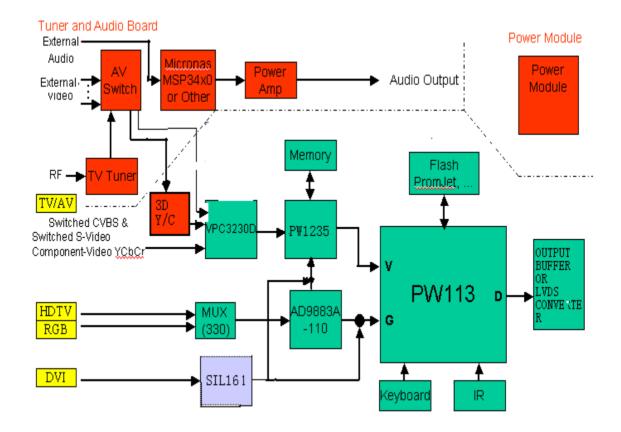
注: PT4206 另有一个 SERVICE 端口可连接 PC RS232 端口,供维修人员升级软件等用途使用。

二) 工作环境要求


工作环境	温度	0°C~40°C
要求	湿度	20%~80%

三) 其他

调谐系统	频率合成(FS)调谐,节目数量 236 个
NICAM 解调	有
声效处理	AV 立体声、SRS WOW 音效,五段均衡及平衡调整
NTSC 制 3D 梳状滤波器	有
图像静像功能	TV/AV/S-VIDEO/YCbCr 下有此功能
屏幕显示语言	中/英文,菜单位置用户可调
无信号蓝色屏幕	有
省电功能(电源管理模式)	当本机工作于 PC 输入模式,且用户使用的 PC 无输出
	信号时,约 60 秒后等离子电视将自动关闭,进入待
	机省电模式, 当按本机任意键或遥控器上任意键或 PC
	再次出现时,等离子电视将自动打开。
即插即用	本等离子电视作为电脑终端显示设备,无须单独配备
	安装软件,作到真正的即插即用。
无闪烁、无辐射、绿色环保	等离子电视不仅能体现高品质画面,更能避免辐射,
	保护视力。
像素移动	此功能打开后,显示图像定时移动,以保护显示屏。
白屏显示	此功能打开后,屏幕显示全白信号,以消除轻微残影。
	(详细内容请参阅用户手册)
家用/商用模式选择	按照用户使用需求选择是否进行 15 分钟无信号关机
	及 3 小时无操作关机。(详细内容请参阅用户手册)


三、整机组成

一) PDP 整机内部示意图

序号	名 称
1	面框
2	滤波玻璃
3	压条
4	PDP 显示屏模块
(5)	安装好信号板的下盖板及其他部件
6	后盖

注: 此图为示意图, 具体装配情况见整机装配及接线图。

第二章 长虹等离子电视 PT4206 的主要集成电路功能简介

一、长虹等离子电视 PT4206 主要集成电路及其功能:

序号	位号	型号	主要功能
1	N901	TDQ-6F7-FM2W	一体化高频头
2	N601	MSP3410G-C12-100	音频处理
3	U705	TA2024	音频功放
4	U701	uPD64083GF-3BA	NTSC 3D 梳状滤波器
5	N902	TEA6425D	AV 视频开关
6	U1	VPC3230D-QA-B3	数字视频处理
7	U6	AD9883AKST-110	模数转换
8	U11	SiI161BCT100	DVI 信号处理
9	U16	PW113-20Q	格式变换及 MCU
10	U17	AM29LV800BT-90	FLASH ROM
11	U22	DS90C383AMTD	差分发送器
12	U20	ST232CD	RS-232 信号处理
13	U7	24LC21A/SN	E ² PROM(显示器参量信息)
14	U9/U13	SN74LVC126AD	缓冲放大
15	U71	74LV32D	同步整形放大
16	U8	24LC21A/SN	E ² PROM(DVI 参量信息)
17	U19	24LC32A/SN	E ² PROM (用户控制信息)
18	U4	IS42S16400(A)-7T	SDRAM
19	U5	PI5V330(Q)	RGB/YPbPr 开关
20	U3	PW1235	IP 转换及画质改善

二、长虹等离子电视 PT4206 集成电路功能介绍

1、模数转换器 AD9883A 简介:

AD9883A 是用于个人计算机和工作站捕获 R、G、B 三基色图像信号的优选 8 位输出的模拟量接口电路,它的 140MSPS 的编码速率和 300MHz 的模拟量带宽可支持显示高达 1280 \times 1024(SXGA)显示分辨率。

AD9883A 的内部锁相环以行同步输入信号为基准产生像素时钟,像素时钟的输出频率范围为 20MHz~140MHz。

AD9883A 有三个高阻模拟输入脚作为 R、G、B 三基色通道,它适应 $0.5\sim1.0V$ 峰峰值的输入信号,信号的输入应保持和地的阻抗为 75 欧,并且通过 47nF 电容耦合到 AD9883A 输入端,这些电容构成了部分直流恢复电路。

行同步信号从 AD9883A 的 30 脚输入,用来产生像素时钟 DCLKA 信号和箝位时序,行同步信号输入端包括一个施密特触发器,以消除噪声信号。为使三基色输入信号被正确数字化,输入信号的直流分量补偿必须被调整到适合 A/D 变换的范围,在行同步信号的后肩为箝位电路提供基准的黑电平参考,产生箝位脉冲保证输入信号被正常箝位,另外通过增益的调整调节图像的对比度,从而调整直流分量的补偿,也就调整了图像的亮度。

AD9883A 功能特点:

最大采样量化速率 140MSPS:

300MHz 模拟量输入带宽;

0.5~1V 的模拟量输入;

锁相环的时钟时基误差500pS p-p;

低功耗模式;

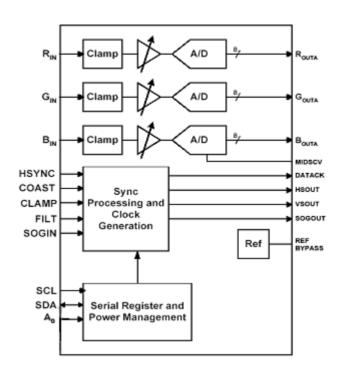
3.3V 电源供应;

支持 4:2:2 输出格式的 YUV 信号;

2.5~3.3V 三态 CMOS 输出;

多路输出端口;

低功耗: 550mW;


内置锁相环,根据行同步信号产生像素时钟信号;

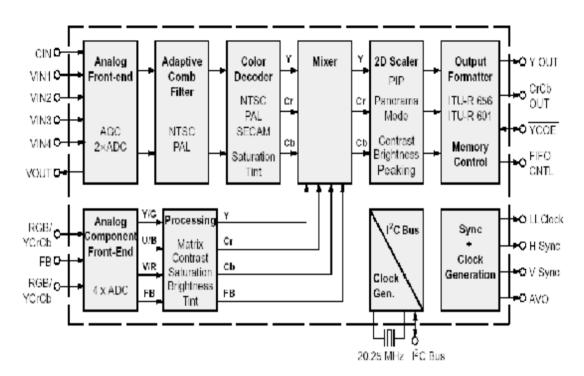
采用 80-pin LQFP 贴片封装。

AD9883A 管脚功能:

管脚	管脚名称	管脚功能
70~77	RED0∼RED7	数字红基色信号输出
2~9	GREEN0∼GREEN7	数字绿基色信号输出
12~19	BLUE0~BLUE7	数字蓝基色信号输出
67	DATACK	象素时钟
66	HSOUT	数字行同步信号输出
65	SOGOUT	绿基色限幅的同步信号
64	VSOUT	数字场同步信号输出
37	MIDSCV	R、G、B 箝位参考电位
58	REFBYP	内部参考电位
31	VSYNC	模拟场同步信号输入
30	HSYNC	模拟行同步信号输入
43	BAIN	模拟蓝基色信号输入
49	SOGIN	模拟绿基色同步信号输入
48	GAIN	模拟绿基色信号输入
54	RAIN	模拟红基色信号输入
29	COAST	锁相控制脉冲输入
38	CLAMP	外部箝位信号(本机接地)
55	A0	地址串行输入
56	SCL	I ² C 总线(时钟线)
57	SDA	I ² C 总线(数据线)
33	FILT	锁相环外接滤波器
26, 27, 39,	AVDD	模拟电源
42, 45, 46,		
51, 52, 59,		
62		
11, 22, 23,	V33	输出端口工作电源
69, 78, 79		
34, 35	PVDD	锁相环工作电源
1, 10, 20,	GND	地
21, 24, 25,		
28, 32, 36,		
40, 41, 44,		
47, 50, 53,		
60, 61, 63,		
68, 80		

AD9883A 系统图:

2、VPC3230 简介:


VPC3230 是高性能的单片视频处理器,它适用于 4:3 或 16:9、50 / 60Hz 和 100 / 120Hz 的电视系统,它有以下主要特点:

- 高性能的自适应的 4 行梳状滤波器,完成 Y/C 分离;
- 多制式 (PAL/NTSC/SECAM) 色度解码器;
- 四路 CVBS 信号输入,一路 S 端子输入,两路 YUV 信号输出;
- 2路 RGB / YUV 信号输入,同时伴有快速消隐信号输入;
- 高品质的 A/D 变换器,内置箝位和 AGC 电路;
- 多种同步信号处理:
- 内置增益、对比度、亮度、色饱和度、色调调节电路;
- 具有可编程的清晰度控制;
- I²C 总线控制;
- 20.25MHz 晶振,极少外围元件。

管脚	管脚名称	管脚功能
1~3	R1G1B1IN	模拟三基色输入通道 1
4~6	R2G2B2IN	模拟三基色输入通道 2
7, 64, 30,	GND	地
11, 12, 25,		
35, 65, 77,		
46, 51, 68,		
80		
8	NC	空脚

9	VSUPCAP	电源去耦
10, 29, 36,	V33	数字电源
45, 52		
59, 69, 76	AVCC	模拟电源
13	SCL	I ² C 总线(时钟线)
14	SDA	I ² C 总线(数据线)
15	RESQ	复位
16	TEST	测试
17	VGAV	VGA 场同步信号输入
18	YCOEQ	Y/C 信号输出使能
19~23	FFIE	空脚
24	CLK20	主时钟信号输出
27	LLC2	倍频时钟输出
28	LLC1	空脚
31~34	Y0∼Y7	数字 ITU-R656 格式的 YUV 信号输出
$37 \sim 40$		
41~44	C0~C7	数字色差信号输出
$47 \sim 50$		
53	INTLC	隔行扫描控制输出(0-奇数场,1-偶数场)
54	AVO	视频有效信号使能
55	FSY/HC	空脚
56	MSY/HS	行同步脉冲信号输出
57	VS	场同步脉冲信号输出
58	FPDAT	NC
60	CLK5	5M 时钟输出
61	NC	NC
62	XTAL1	20.25M 晶振输入
63	XTAL2	20.25M 晶振输出
66	VRT	A/D 变换参考电压去耦
67	I ² CSEL	I ² C 总线地址选择端
70	VOUT	模拟复合视频信号输出
71	CIN	S端子色度信号输入
72	VIN1	S端子亮度信号输入
73	VIN2	外部视频信号输入
74	VIN3	TV 视频信号输入
78	VREF	A/D 变换参考电压去耦
79	FB1IN	快速消隐信号输入

VPC3230 内部框图:

3、PW113 简介:

PW113 是高性能的可编程的图像处理器,它采用高质量的在国际上获奖的图像缩放技术,包括高级 OSD 控制、灵活的输入接口、系统内置的 SDRAM 和强大的 80186 微处理器,支持行和场图像智能缩放、图像自动最优化,因而使屏幕上的图像显示精细完美。

PW113 包括错误安全模式,它有一个独一无二的特点,提供一个完整的 VESA 总线兼容,它不需要外接帧缓存器,足够的高速缓存允许像素比率的转换,从而降低输出时钟频率,扩展显示系统的兼容性。

从 VGA 到 UXGA 分辨率(1600×1200)的计算机图形信号能够被重新调整大小,输出的最高像素分辨率为 SXGA(1280×1024),以适应标准分辨率的显示设备。

PW113 图形处理器支持以下格式的视频信号: 宽高比 4: 3 或 16: 9 的 P/N 制视频信号、DVD、HDTV 等,视频输入模式可以是 YUV4:4:4(24bit)或 YUV4:2:2(16bit),另外,它还有一个完整的 ITU-R656 接口,它允许 YUV4:2:2 视频信号输入。

PW113 使用集成 PLL 时钟来实现和输入时钟同步。

PW113 集成有 OSD 功能控制器,它以位图方式显示,提供基于 64K 色的调色板的 16 色的位映射,它还支持菜单透明、半透明、淡入淡出功能。

特点:

ITU-R656 视频接口:

有效降低 EMI 电磁干扰技术;

箝入式的实时操作系统;

两个PWM 脉宽输出;

错误安全模式:

集成 PLL 锁相环输出;

智能化输入信号模式自动识别;

可实现 YPbPr/YCbCr/YUV-TO-RGB 的色度空间转换;

支持单双像素驱动的 LCD 屏技术

支持水平和垂直独立图像缩放:

自动图形最优化:

支持像素比率转换:

支持非线性缩放:

视频图像处理:

高级屏显菜单(OSD)支持:

内置 80186 微处理器:

内置 Power-on Reset 电路。

PW113 端口功能说明:

一、输入输出口

PW113 图像处理器包括非常灵活的输入输出口:

- 24 数字三基色 R、G、B 信号输入:
- ITUR656 模式下视频 YUV 信号输入;
- 48 数字 R、G、B 显示信号输出(分奇偶像素点)。

二、同步解码器和定时器

这个同步信号处理器对输入信号的处理是非常灵活的,它支持几乎所有的同步类型包括 数据使能模式、分离的同步信号、复合的同步信号以及绿基色同步信号。

对于数字接口,它支持单一的数据使能模式,在这个模式下,场同步和行同步信号是来源于这个数据使能输入,同步定时电路来自经过选择的标准的视频输入信号,以适应自动图形最优化系统的处理。

三、自动图形最优化

PW113 能捕获图像的全部参数并能进行自动设置,这些参数包括时钟频率的采样、图像位置和大小、图像信号的增益。在图像自动最优化期间,图像可以被消隐也可以被显示。另外 PW113 也能精确调整输入信号的分辨率。

四、存储缓冲器

这个内置存储器通常存储图像、屏显数据或微处理器 RAM 数据,这个存储器具有以下特征:

- 1、像素比率转换: 芯片内的存储器在允许的条件下有扩展的活动图像输出,降低消隐和像素时钟率,它由 PW113 使能控制,对于显示设备兼容的范围比较宽。
- 2、安全帧频变换: 当输入帧频超过显示设备的最大值时,在没有连接另外的显示设备时, 自动降低帧频,这时屏幕上显示一个菜单信息,告知用户应重新调整计算机的帧频。
- 3、芯片微处理器 RAM: 微处理器 RAM 能分配 $0\sim64$ K 的图像存储空间,因而不需要外部 RAM。
- 4、屏显数据:这个屏显数据是从存储缓冲器中分配的存储空间。

五、屏显控制

这个屏显功能可以用来启动屏幕、菜单显示,它支持透明的任意窗口大小的菜单,并且菜单具有淡入淡出功能。屏显有两种模式:一是提供来自 64K 色调色板的每像素 4bit 的 16种颜色;二是提供来自 64K 色调色板的每像素 2bit 的 4种颜色。在 16 色模式中,屏幕菜单的大小可以达到 480×248。

六、图像缩放

它提供高质量的图像缩放功能,垂直和水平缩放比例可独立编程,它的缩放比例范围为: 1/64~32,图形缩放可以是逐线进行,也可以是逐点进行,同时它也提供高质量的非线性比例的缩放,比如屏宽比的转换。

七、色度矩阵

一个内建的色度矩阵可以提供色度空间转换,它能完成 $R \times G \times B$ 三基色的线性变换,能对色调、色饱和度、色温和白平衡进行调整控制。

八、色度查找表

这个色度查找表有效大小为 256×10,它由三个独立的表,每一个基色对应各自的表,10bit 精确的数据允许对显示设备使用更多位的颜色来补偿灰度或进行 Y 校正,通过 dither 算法可以使 10bit 数据压缩到 8bit 或者更低的数据,16bitYUV 数据从外部管脚输入,在芯片内可达到 30bit 的精度像素。

九、色度空间扩展

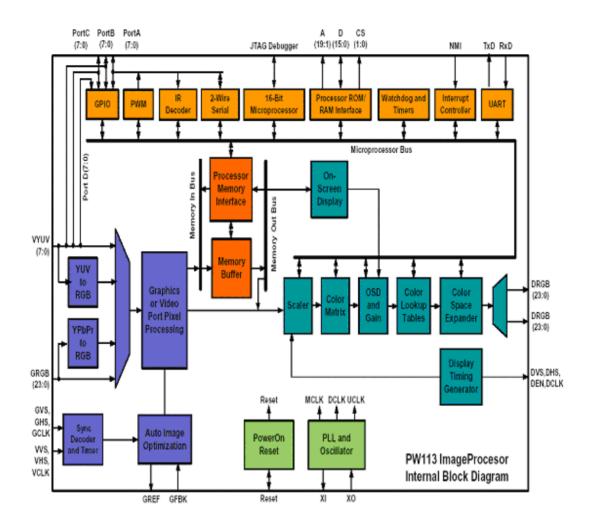
色度空间扩展保证在显示设备不支持 24bit 数据输入的情况下,能够完全捕获 16.7M 的 色深,它支持可编程的空间域和时间域的 dither 算法。典型的输出配置如下:24bit(8 bit R +8 bit G+8 bit B)像素、18bit(6 bit R+6 bit G+6 bit B)像素、15bit(5 bit R+5 bit G+5 bit B)像素、12bit(4 bit R+4 bit G+4 bit B)像素,另外这个色度空间扩展可以接受从伽马表获得 24、27、30bit 像素的数据并进行处理。

十、晶体振荡器

集成振荡器和可编程的倍频器对芯片时钟是完全必需的,它外接晶振,控制微处理器、 存储器和各种显示数据时钟。

十一、微处理器

芯片内置 80X86 微处理器,它具有图像处理器开发应用的通用特点。它扩展的端口包括中断口、通用的 I/O 口、异步通讯口、红外解码器、PWM 输出和定时器等全部的功能,这些都是通过硬件完成的,另外,它还包括 EPROM、ROM、RAM 接口电路,微处理器还提供 5 个管脚端口,可以连接到外部 JTAG 调试器。


管脚功能描述:

管脚	管脚名称	管脚功能
视频 Vport 端口		
71	VCLK	视频像素时钟输入
74	VVS	视频场同步信号输入
75	VHS	视频行同步信号输入
69	VFIELD	隔行扫瞄奇偶场信息指示输入
70	VPEN	视频使能信号输入
47~56	YUV0~YUV7	ITU-R656 格式的数字 YUV 信号输入,可复用作 I/O 口。 本机应用为: 47 MUTE 静音控制、48 PW1230E PW1235 输出使能、49 VGASEL VGA/YPbPr 选择、50 S1 伴音 制式控制、51 DVIPD DVI 接口待机、54 STANDBY 电源 待机控制、56 RST1 外围 IC 复位
图像 Gport 端	口	
31	GCLK	图像像素时钟输入
32	GVS	图像场同步信号输入
33	GHSSOG	图像行同步信号输入
34	GPEN	图像使能信号输入
35	GFBK	ADC 的 PLL 反馈信号输入
20~27	GRE0∼GRE7	数字图像红基色像素数据输入
10~15, 18,	19 GGE0~GGE7	数字图像绿基色像素数据输入
2~9	GBE0∼GBE7	数字图像蓝基色像素数据输入
图像显示 Dport 端口		

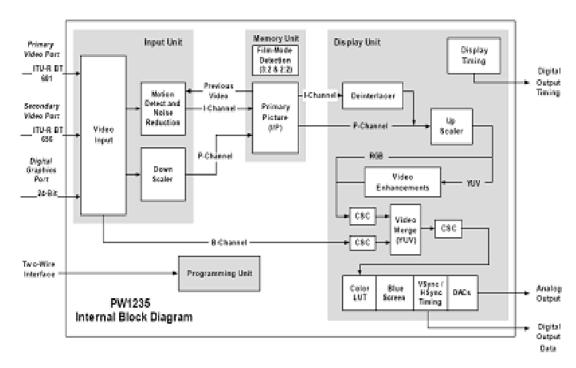
129~136	DGR0~DGR7	数字红基色像素数据输出(奇像素点)
119~122,	DGG0~DGG7	数字绿基色像素数据输出(奇像素点)
125~128		
111~118	DGB0~DGB7	数字蓝基色像素数据输出(奇像素点)
显示端口	To grav	
106	DCLK	像素显示时钟输出
108	DVS	像素显示场同步信号输出
109	DHS	像素显示行同步信号输出
110	DEN	像素显示使能信号输出
96~103	DR0~DR7	数字红基色像素数据输出(偶像素点)
88~95	DR0~DR7	数字绿基色像素数据输出(偶像素点)
76~83	DB0~DB7	数字蓝基色像素数据输出(偶像素点)
微处理器接口	,	
194	WR	外部 RAM 写使能
195	RD	外部 RAM 读使能
196	ROMOE	外部 ROM 读使能
197	ROMWE	外部 ROM 写使能
198	CS0	片选信号
199	CS1	片选信号
193	NMI	不可屏蔽中断
164 , 173~	A1~A19	微处理器与 ROM 接口的地址总线
184, 187~		
192		
148~163	D0∼D15	微处理器与 ROM 接口的数据总线
外围控制接口		
207	PORTA0	DISPEN 信号输出(PDP 屏显示控制)
206	PORTA1	READY 信号输入(PDP 屏准备 OK)
205	PORTA2	SDA
204	PORTA 4	SCL
203	PORTA4	红外接收信号输入
201	PORTA6	DVI 数字接口选择控制
203	PORTA4	红外接收信号输入
57、58、60~	PORTB0~PORTB7	本机按键输入
64	DODECO.	As a rest to let to to V located
39	PORTC0	MA-EN 防拷贝开关控制
40	PORTC1	480ISEL 480I 防拷贝控制
41	PORTC2	RST-1235 PW1235 复位
42	PORTC3	DIGSEL DVI 数字接口选择
43	PORTC4	LVDSON LVDS(低压差分输出)使能控制
44	PORTC5	S0 伴音制式控制
45、46	PORTC6	LED 控制
(7	PORTC7	中不平
67	RXD	串行数据接收
68 SELVE	TXD	串行数据发送
通用端口	TECT	261.2.64.42.44.44.44.44.44.44.44.44.44.44.44.44
142	TEST	测试模式使能
139	RESET	复位
169	XI	晶体振荡输入
170 电源与地	XO	晶体振荡输出
1 + 14 1 1.4		

16, 37, 65,	VDD1	1.8V 数字电源
84, 137, 185		
17, 38, 66,	VSS	数字地
85, 138, 186		
29, 52, 72,	VDDQ3	3.3V 数字 I/O 口电源
86 , 104 ,		
123, 140,		
171, 208		
1, 30, 53,	VSSQ	数字 I/O 口地
73, 87, 105,		
124, 141,		
172		
165	VDDPA2	1.8V 时钟发生器电源
166	VSSPA2	时钟发生器模拟地
167	VDDPA1	1.8V 时钟发生器电源
168	VSSPA1	时钟发生器模拟地

PW113 系统框图:

4、PW1235 简介

PW1235是一个优质的数字视频处理器, 它可接收标准的数字视频信号, 进行 deinterlacing、 scaling和画质改善处理后输出可调整的视频信号。它主要有输入接口、 MEMORY控制电路、画质改善、输出接口电路、 I^2 C总线接口等电路组成,整个电路功能是由 I^2 C总线控制。


管脚	管脚名称	管脚功能
视频 Vport 端口		
27	PVVS	主视频场同步信号输入
28	PVHS	主视频行同步信号输入
25	PVCLK	主视频像素时钟输入
26	CREF	主视频参考时钟输入
12	SVVS	副视频场同步信号输入
11	SVHS	副视频行同步信号输入
13	SVCLK	副视频像素时钟输入
30~33, 35~38	VR0∼VR7	R视频数据输入
15~18, 20~23	VG0∼VG7	G 视频数据输入

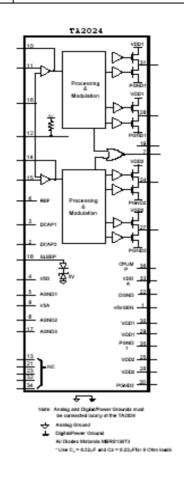
1~4,6~9	VB0~VB7	B视频数据输入
图像 DGport si		15 优/// 数 / 伯 個 / 八
68	DGCLK	图像像素时钟输入
67	DGVS	图像场同步信号输入
66	DGHS	图像行同步信号输入
91, 92, 94, 9		数字图像红基色像素数据输入
$97 \sim 100$	JOKO DOKI	数 1 因
81~84, 86~	89 DGG0~DGG7	数字图像绿基色像素数据输入
$70 \sim 73, 75, 7$		数字图像蓝基色像素数据输入
78, 79	ot Bobo bobi	从 ,国际血至目标次从相關/(
图像显示模拟	 输出端口	
156	ADR	R模拟输出
153	ADG	G模拟输出
150	ADB	B模拟输出
161	VREFIN	参考电压输入
162	VREFOUT	参考电压输出
159	RSET	SCALE 调节电阻接口
160	COMP	电压补偿
图像显示 Dpo:		
102	DCLK	像素显示时钟输出
103	DVS	像素显示场同步信号输出
104	DHS	像素显示行同步信号输出
108	DENR	R像素显示使能信号输出
106	DENG	G像素显示使能信号输出
107	DENB	B像素显示使能信号输出
145	DEN	像素显示使能信号输入
132 、 133 、	DR0~DR7	数字红基色像素数据输出
135 、 136 、		
138 、 139 、		
141、142		
121 、 122 、	DG0~DG7	数字绿基色像素数据输出
124 、 125 、		
127~130		
110 、 111 、	DB0~DB7	数字蓝基色像素数据输出
113 、 114 、		
116~119		
存储器接口脚		
229	MCLK	SDRAM 时钟
223	MCLKFB	SDRAM 时钟反馈
225	MRAS	SDRAM 列地址控制
226	MCAS	SDRAM 行地址控制
227	MWE	SDRAM 写使能
213 、 210 、	MA0~MA13	SDRAM 地址总线
207、204、		
203 、 206 、		
209、211、		
214 、 217 、		
215 、 220 、		
221、218		

0.5.5 0.5.0	100 1015	CDD ANG WALL Y ALL
255 、 252 、	MD0~MD15	SDRAM 数据总线
248、245、		
242、239、		
236、232、		
231 、 234 、		
238、241、		
244 、 247 、		
250、254		
外围控制接口		
47	2WDAT	SDA
45	2WCLK	SCL
43	2WA1	地址编程位 1
44	2WA2	地址编程位 2
178、179、	MCUD0 ~	本地 MCU 数据总线
181~186	MCUD7	The state of the s
$168 \sim 170$	PORTB1	本地 MCU 地址总线
$172 \sim 174$, a see of a second sec
176、177		
190	MCUCS	片选信号
191	MCUWR	MCU 系统读写信号
192	MCUCMD	MCU 系统英与信号 MCU 系统命令信号
188	MCURDY	
	MICUKDI	MCU 系统 Ready 信号
通用端口	TTP OT	MILLY DIEGHT DI ALLAND
56	TEST	测试模式使能
144	TESTCLK	测试模式时钟输入
55	RESETn	复位
40	XTALI	晶体振荡输入
41	XTALO	晶体振荡输出
146	CGMS	写保护信号管理系统使能
201	MVE	Macrovision 写保护使能
62, 63,	NC	
194,195		
电源与地		
5, 34, 93,	VDD	2.5V 数字核心电源
123,140,		
175,205, 235		
19, 49, 77,	VSS	数字核心地
112, 134,		
187, 219,		
251	DVDD	2.337 粉ウ 1/0 口中酒
14, 29, 42, 54, 64, 69,	PVDD	3.3V 数字 I/O 口电源
80, 90, 101,		
109, 120,		
131, 143,		
165, 180,		
200, 208,		
216, 224,		
230, 237,		
243, 249,		
256		

10, 24, 39,	PVSS	数字 I/O 口地
46, 57, 65,		27 1 20 1 120
74, 85, 96,		
105, 115,		
126, 137,		
147, 171,		
189, 193,		
202, 212,		
222, 228,		
233, 240, 246, 253		
60	MPAVDD	2.5V MEMORY 锁相模拟电源
61	MPAVSS	2.5V MEMORY 锁相模拟地
58	MPDVDD	2.5V MEMORY 锁相数字电源
59	MPDVSS	2.5V MEMORY 锁相数字地
197	DPAVDD	2.5V 显示锁相模拟电源
196	DPAVSS	2.5V 显示锁相模拟地
199	DPDVDD	2.5V 显示锁相数字电源
198	DPDVSS	2.5V 显示锁相数字地
157	AVD33R	R 通道 3.3V 模拟电源
154	AVD33G	G 通道 3.3V 模拟电源
151	AVD33B	B 通道 3.3V 模拟电源
158	AVS33R	R 通道 3.3V 模拟地
155	AVS33G	G 通道 3.3V 模拟地
152	AVS33B	B 通道 3.3V 模拟地
163	ADAVDD	2.5V 模拟输出电源
164	ADAVSS	2.5V 模拟输出地
149	ADDVDD	2.5V 模拟输出数字电源
148	ADDVSS	2.5V 模拟输出数字地
166	ADGVDD	模拟输出辅助电源
167	ADGVSS	模拟输出辅助地

PW1235 内部框图:

5、TA2024 简介


TA2024 是一个双声道 T 类数字音频功放集成电路,失真小、效率高,它有以下特点:

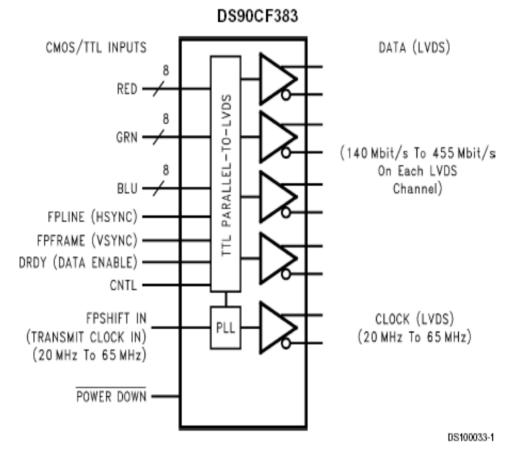
- 静音控制;
- 温度保护电路:
- 开关低噪声;
- 工作电源: 12V。

管脚	管脚名称	功能
2, 3	DCAP2, DCAP1	泵电流开关
4, 9	V5D, V5A	数字 5V,模拟 5V
5, 8, 17	AGND1, AGND2,	模拟地
	AGND3	
6	REF	内部参考电压
7	OVERLOADB	过载检测输出
10, 14	OAOUT1,	输入状态
	OAOUT2	
11, 15	INV1, INV2	单端输入
12	MUTE	静音电平输入
16	BIASCAP	输入偏置电压
18	SLEEP	休眠模式控制
19	FAULT	输出过载检测输出
20, 35	PGND2, PGND1	功率地
22	DGND	数字地
24, 27; 31,	OUTP2 &	输出
28	OUTM2; OUTP1	
	& OUTM1	
25, 26, 29,	VDD2, VDD2,	放大器电源 12V
30	VDD1, VDD1	
13, 21, 23,	NC	
32, 34		

33	VDDA	12V 模拟电源
36	CPUMP	泵电压输出
1	5VGEN	5V 整流

TA2024 内部框图:

6、DS90CF383A 简介


输入的 28 bit 的视频数字信号(24 bit 数字三基色和 4 bit 的控制信号)经过 DS90CF383A 发送器编码后,输出 4 路差分信号数据流,另外锁相环时钟信号经编码后也输出一路差分信号,五路差分信号送至等离子屏控制图像显示。锁相环时钟的频率范围: 20M~65MHz,LVDS 差分信号的带宽可达 455M,数据吞吐量可达 227Mb/S,它的数字逻辑电平转换是上升沿触发。

DS90CF383A 差动输出可大大降低电磁干扰,减少上屏的线缆数据线,增加等离子屏驱动电路的稳定性,从而使等离子显示器工作可靠稳定。

管脚	管脚名称	功能
1,9,17,26,34	VCC	电源
44		
5,13,21,29,53	GND	地
33,35,36,43,49		
2,3,50,51,52	DRE0~DRE7	8位数字红基色数据输入
54,55,56		
4,6,7,11,12,14	DGE0~DGE7	8位数字绿基色数据输入
8,10		
15,19,20,22	DBE0~DBE7	8位数字兰基色数据输入
23,24,8,16		
27	HSYNC	行同步输入
28	VSYNC	场同步输入

30	DE	像素显示使能
31	TXCLK IN	像素显示时钟输入
32	<u>PWRDWN</u>	LVDS 控制
37,38,41,42	TXOUT+	四路 LVDS 数据信号输出
45,46,47,48	TXOUT-	
39,40	TXCLKOUT+	一路 LVDS 时钟信号输出
	TXCLKOUT-	

DS90CF383 内部框图:

Order Number DS90CF383MTD See NS Package Number MTD56

7、DVI 接收解码芯片 Si I 161B 简介:

Silicon Image 公司的 DVI 接收解码芯片 Sil161B 作用是将显卡产生的数字信号(包括控制和数据信息)通过 TMDS 通道传输过来的信号(DVI1.0 数据)接收并经过数字解码得到 24 位数字三基色信号,它支持高分辨率显示,最高可达 UXGA,它也支持 24bit 的色深(可显示 16.7M 种彩色),它的输出时钟是交错输出,可大大降低电磁干扰和噪声。其主要特点有:

功耗低:工作电压 3.3V,最大允许电流 280 毫安;

采用交错时钟输出,有效降低噪声干扰;

支持 HDTV 分辨率;

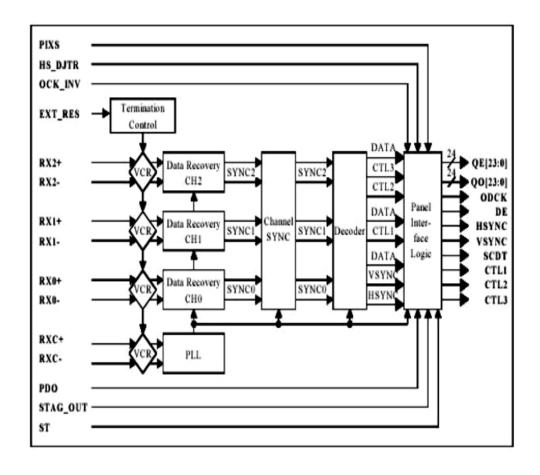
支持 VGA to UXGA 显示分辨率

支持远距离的电缆、光纤传输:

高压静电保护;

适应 DVI1.0 标准;

行同步增强电路;


低功耗待机模式;

兼容 VESA P&D AND DFP 标准。

管脚功能:

管脚切能:	管脚名称	功能
90	RX0+	低压差分数据 1 输入
91	RX0-	低压差分数据 1 输入
85	RX1+	低压差分数据 2 输入
86	RX1-	低压差分数据 2 输入
80	RX2+	低压差分数据3输入
81	RX2-	低压差分数据 3 输入
93	RXC+	低压差分时钟输入
94	RXC-	低压差分时钟输入
49~56	QO0~Q07	8bit 奇像素点兰基色输出
59~66	QO8~Q015	8bit 奇像素点绿基色输出
69~75,77	QO16~Q023	8bit 奇像素点红基色输出
10~17	QE0~QE7	8bit 偶像素点兰基色输出
20~27	QE8~QE15	8bit 偶像素点绿基色输出
30~37	QE16~QE23	8bit 偶像素点红基色输出
99	RESERVED	接高电平,电路才能工作
100	OCK_INV	时钟极性选择, L: 正常; H: 反相
1	HS_DJTR	同步头峰值检测使能 / 禁止, H: 使能; L: 禁止
2	PD	低功耗控制, H: 正常; L: 低功耗(输出呈高阻)
3	ST	输出驱动强度控制
4	PIXS	输出像素选择, L: 24bit 的偶像素输出; H: 48bit 的奇
		偶像素输出
7	STAG_OUT	交错信号输出, H: 同相输出; L: 交错输出
8	SCDT	同步检测, H: 输出数据有效; L: 输出数据无效
9	PDO	低功耗模式,H: 正常; L: 低功耗
44	ODCK	输出数据时钟,取决于 OCK_INV 的极性
46	DE	输出数据使能
47	VSYNC	场同步信号输出
48	HSYNC	行同步信号输出
18,29,43,57,78	OVCC	输出电源
19,28,45,58,76	OGND	输出地
6,38,67	CVCC	芯片数字电源
5,39,68	GND	数字地
82,84,88,95	DAVCC	模拟电源
99,83,87,89,92	AGND	模拟地
97	PVCC	锁相环电源
98	PGND	锁相环地
96	EXT-RES	阻抗匹配控制,它必须外接 390 欧的电阻与 DAVCC 相
		连

Sil161B 内部框图:

第三章 长虹等离子电视 PT4206 整机信号流程分析

- 一、各部分信号处理概述
- 一)模拟信号处理

1、射频处理

射频信号处理过程主要包括高频电路、视频检波电路、伴音鉴频电路,这些电路功能由一体化高频头 TDQ-6F7-FMW2 来完成,其管脚功能如下:

引脚	符号	功能作用
1	VT	模拟调谐电压(本机未用)
2	BTL	+32V 电源, 形成 0~32V 的调谐电压
3	BM	+5V 电源
4	ADD	地
5	S0	制式切换控制
6	S1	制式切换控制
7	SCL	I ² C 总线(时钟线)
8	SDA	I ² C 总线(数据线)
9	SIF	第二伴音中频信号输出

10	VIDEO OUT	视频信号输出
11	VIF	电源
12	AUDIO OUT	伴音低频信号输出(本机未用)

首先天线信号进入一体化高频头 N901 处理,经过高频放大、选频回路、混频电路后得到中频信号,经过视频检波从 9 脚输出视频信号,同时差拍出第二伴音中频信号。

在高频头电路中,调谐系统采用频率合成技术进行选台,在 CPU 的 I^2 C 总线控制下完成调谐选台,它在调谐系统中记忆的是分频系数。

频率合成调谐正常工作所需两组工作电源: +32V 调谐电压、+5V 锁相环电源。

另外 N901 的 5、6 脚为制式切换控制输入,由 PW113 的 44、50 脚发出。经 N901 处理 的视频信号从 10 脚经 Q905 射随输出送至视频开关电路与 AV/S-VIDEO 输入切换后送至视频处理电路 VPC3230 进行处理。

2、伴音处理:

从 N901 的 9 脚输出的第二伴音中频信号经过 Q910 放大、Q602 射随后由 C611 耦合送至 MSP3410G 的 67 脚进行 SIF 解调及 NICAM 识别解码;同时 AV 立体声伴音信号分别经 C911、C912 耦合送至 MSP3410G 的 53 脚和 54 脚;分量输入源(YCbCr、YPbPr)的立体声伴音信号经 C639、C641 耦合送至 MSP3410G 的 47 脚和 48 脚;另外 PC 及 DVI 输入源的立体声伴音信号分别经 C638、C637 耦合加至 MSP3410G 的 50 脚和 51 脚。后三路伴音信号在集成电路内部经过多路开关 TV 伴音切换,然后进行放大处理、音效处理、音量平衡调整等处理,最后从 27、28 脚输出伴音音频信号,上述控制均是在 I²C 总线(PW113 输出)作用下完成的。

从 MSP3410G 输出的伴音信号经 C629、C630 耦合送至 TA2024 进行功率放大,输出驱动扬声器发声。

二)、数字信号处理

1、要对输入的模拟视频信号和 VGA 模拟信号以及 DVI 信号进行数字化或视频解码输出,以适应 PW113 输入信号的要求,它包括三部分:第一部分是将 VGA 或 YPbPr 的模拟信号通过 AD9883A 进行 A/D 变换,得到 24bit 数字三基色信号;第二部分是将各种视频信号(包括电视信号)通过 VPC3230 视频处理,得到 8bit 的 ITU-R656 格式的 YUV 信号输出;第三部分是将 DVI1.0 标准的数字信号解码得到 24bit 数字三基色信号输出。

VGA/YPbPr 模拟信号的处理: 首先由 PI5V330 在 PW113 控制下切换,然后进入 AD9883A 进行处理,将接收到的 PC 模拟信号 A/D 变换,输出 24bit 的 R、G、B 数字信号。

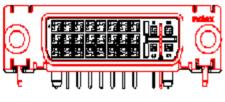
VGA 输入端子的各脚含义如下:

	VGA 15-pin D型	! 接头针脚配直	
针脚编号	信号	针脚编号	信号
1	红色输入(R)	9	空针脚
2	绿色输入(G)	10	接地
3	蓝色输入(B)	11	空针脚
4	空针脚	12	SDA
5	接地	13	水平同步
6	红色接地	14	垂直同步
7	绿色接地	15	SCL
8	蓝色接地		l, u

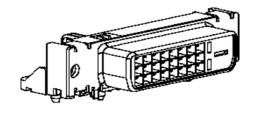
从 VGA 端子 1、2、3 脚接收到的 R、G、B 信号首先经过静电保护电路后在 PI5V330 与 YPbPr 输入端来的分量视频信号切换,经选择后的 R、G、B 信号(PC 源时)分别经 C81、

C82、C84 耦合至 AD9883A 的 54、48、43 脚进行 A/D 变换。另外 VGA 端子输入的行场 同步信号(13、14 脚)也在静电保护处理后送至同步脉冲整形电路,行同步进入 74LCX32 整形后送至 PI5V330 进行选择,其输出行同步信号馈送至 AD9883A 的 30 脚,AD9883A 在行同步信号作用下产生 PLL 锁相环时钟信号,提供 AD9883A 的工作时钟。场同步信号 经 U71 缓冲放大后从 6 脚输出,送至 U9(74LVC126)的 12 脚进行选择,VGA 状态下切换后信号送至 AD9883A 的 31 脚,给 AD9883A 提供场同步信号。

等离子显示器作为外部设备和主机通讯时需提供身份识别信号供主机检测识别。U8 24LC21(EEPROM)存储了有关显示器的硬件参数(如厂商、型号、分辨率配置等)。


AD9883A 在 PW113 总线的控制下,对输入的模拟基色 R、G、B 信号经滤波、采样保持、量化、编码等过程处理后,分别从 $70\sim77$ 脚输出 8bit 的 R 数字信号,从 $2\sim9$ 脚输出 8bit 的 G 数字信号,从 $12\sim19$ 脚输出 8bit 的 B 数字信号,从 67 脚输出像素时钟信号 DATACK。以上信号同时送至 PW113 及 PW1235,根据 PW113 判断所得的信号格式分别处理。

模拟视频信号的处理: VPC3230 支持多种视频格式的信号输入,经过选择后进行 A/D 变换、数字视频处理,输出 8bit 的数字 YUV 分量。


N901 的 9 脚输出视频信号经过 VN901 射随后送至 TEA6425D 的 1 脚,同时一路 AV 视频信号加至 TEA6425D 的 8 脚,还有一路 S 端子信号的 Y、C 信号分别加至 TEA6425D 的 6、5 脚,这三路信号在 TEA6425D 经过源切换后,VIDEO 或 Y 信号由 17 脚输出至 VPC3230D, C 信号由 18 脚输出,同时在 19 脚输出视频输出信号。VPC3230 内部对 TEA6425 送来的信号经过开关选择后进行 A/D 变换,然后进入色度解码电路,该色度解码电路能自动识别 PAL/NTSC/SECAM 信号,经识别后送入各自的解码器处理,其中如信号识别为 NTSC 制式复合视频时,系统将切换 TEA6425D 通道,由 TEA6425D 的 14 脚输出信号至 NTSC 3D 梳状滤波器 uPD64083 进行数字 3D 梳状滤波处理,其输出的 YC 信号重新送到 VPC3230D 的 73、71 脚,进行 AD 变换和色调、色饱和度等控制处理,然后输出数字 YUV 信号,与来自4、5、6 脚输入的视频 YCbCr 信号经过 A/D 变换后的数字 YUV 信号一起进行选择,输出数字 YUV 信号送入视频图像处理,包括二维图像缩放、全景模式、对比度、亮度、增益控制等,然后经过格式变换,从 31~40 脚输出 ITU(国际无线电咨询委员会)-R656 格式的数字 YUV 信号(4:2:2)送往 PW1235 进行 DEINTERLACE 转换等处理。

DVI 数字信号的处理: DVI 数字信号遵循 TMDS 协议标准,所谓 TMDS (transition minimized differential signal) 信号是一种微分信号机制,是一种特殊的的数字讯号一转态最小化差动信号,这种特殊的信号经由具备数字输出的图形界面卡输出以及数字信号线传输,它可以将像素数据编码,并通过串行连接传递,传递的信号具有 3~6 个数据通道对以及一个频率信号对。

DVI 接口示意图如下所示:

DVI-I 接口

DVI-D 接口

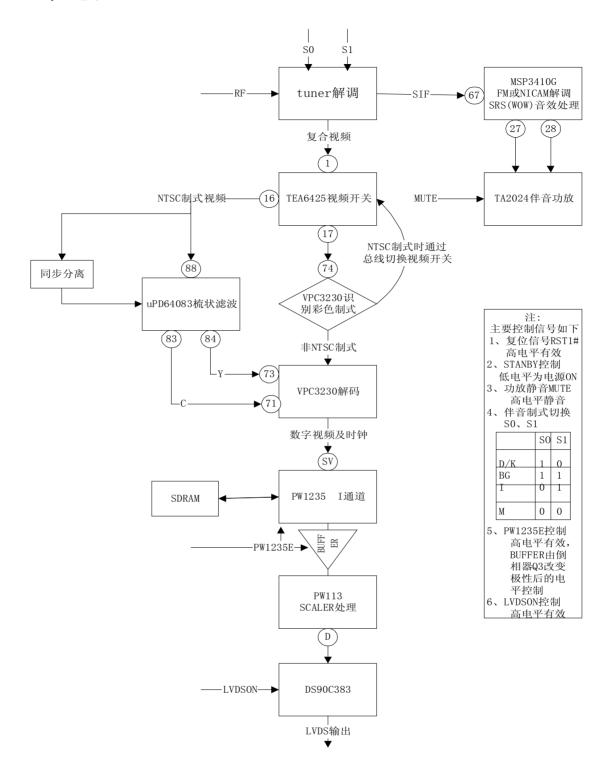
DVI输入针脚配置

针脚编号	信号	针脚编号	信号
1	TMDS Data2-	13	TMIDS Data3+
2	TMDS Data2+	14	+5V Power
3	TMDS Data2/4 Shield-	15	Ground (For +5V)
4	TMDS Data4-	16	Hot Plug Detect
5	TMDS Data4+	17	TMIDS Data0-
6	DDC Clock	18	TMDS Data0+
7	DDC Data	19	TMIDS Data0/5 Shield-
8	No Connect	20	TMDS Data5-
9	TMDS Data1-	21	TMIDS Data5+
10	TMDS Data1+	22	TMDS Clock Shield
11	TMDS Data1/3 Shield-	23	TMDS Clock+
12	TMDS Data3-	24	TMDS Clock-

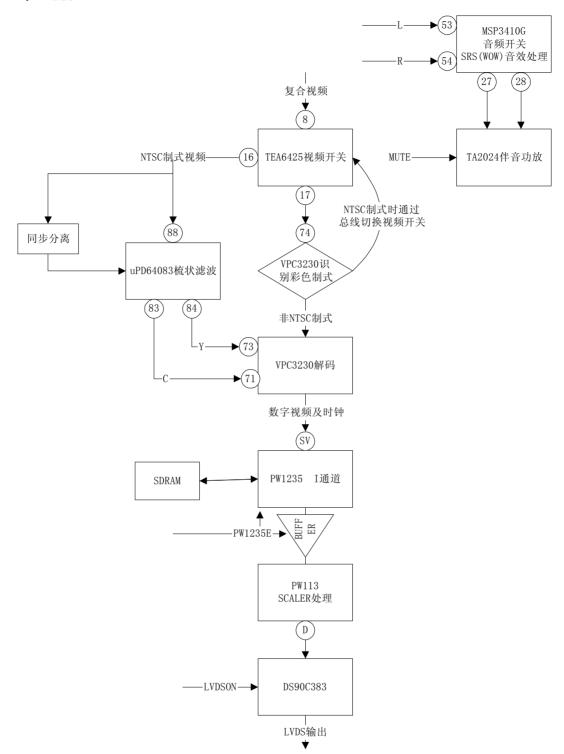
此外,DVI 标准又分成 DVI-I 和 DVI-D 两类,其中 DVI-I 不仅可以支持数字信号,也可以接收模拟信号,而 DVI-D 即属于纯数字的规格,在接头搭配方面,这两种接口的接头大小、针脚排列部分均相同,唯一差异之处在于脚位数的不同,DVI-I 及 DVI-D 分别采用 24+4Pin、24 Pin 的设计,也就是说,DVI-D 信号线可与 DVI-I 插座连接,反之则不行,基于这样的原因,目前显示卡的 DVI 接口几乎都是采用 DVI-I 为主,以避免兼容性问题,本机采用的是 DVI-D 接口。

下面我们来分析 DVI 信号的处理工作流程:

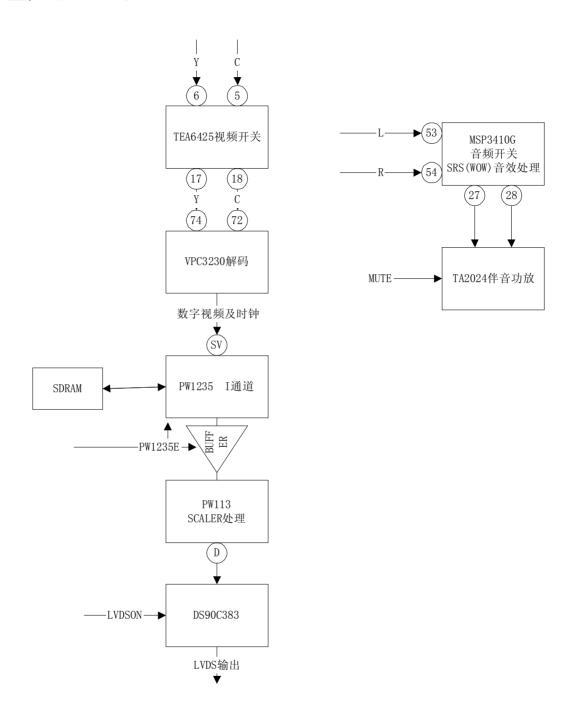
DVI 数字信号(4 路差分信号)通过 DVI 插座分别接至 Sil161B 的 90、91、85、86、80、81、93、94 脚,在 100、3 脚输入总线的控制下,在 Sil161B 内部进行 VCR、数据恢复、同步头检测及增强电路、解码电路以及逻辑接口电路处理后,输出数字三基色信号,输出信号有两种方式:当 Sil161B 的 4 脚输入低电平时,输出 24bit 的偶像素,当 4 脚输入高电平时,输出 48bit 的奇偶像素数据,本机 4 脚接地,故分别从 10~17、20~27、30~37 脚输出三基色偶像素数据,与经过 AD9883A 处理的 24bit 的 VGA 数字信号进行切换,送至 PW113 进行格式变换,当然这两种信号的选择是在 PW113 的控制下进行的。

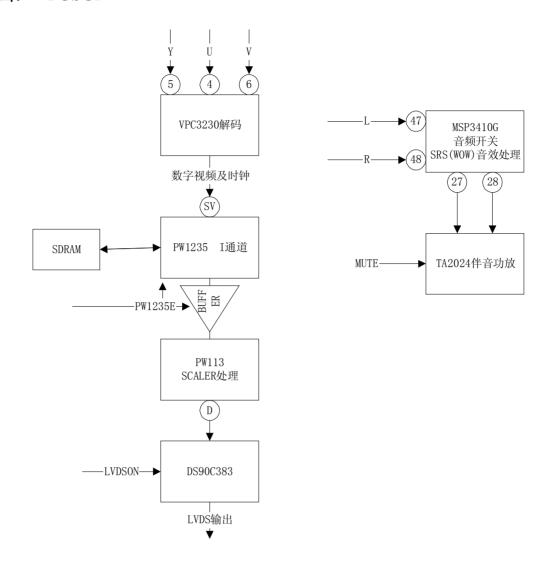

DVI 接口的 6、7 脚为 DDC 数据通道,U7(24LC21A)为一片 E^2 ROM,它存储了 DVI 数据的有关参量信息,它通过总线方式和 DDC 数据通道相接,开机瞬间,这些身份信息将被传送到主机进行识别,主机识别后,按照 E^2 ROM 的参考信息正确输出数字信号。

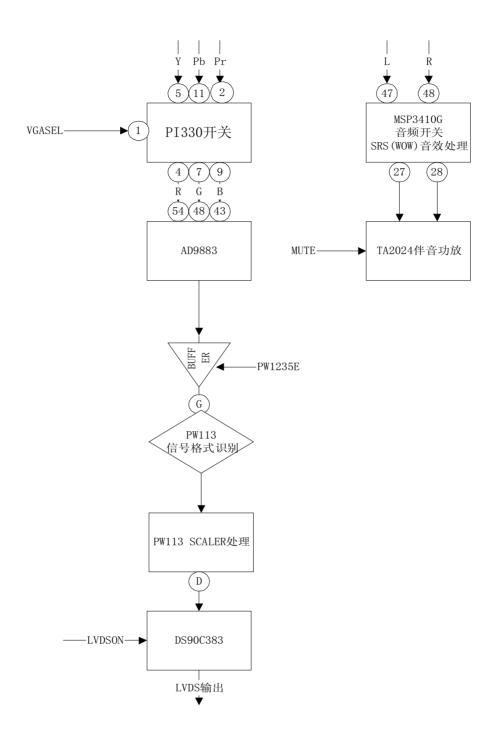
2、VGA 信号、视频信号、DVI 信号经过数字化处理后,送往视频格式处理器 PW113 进行视频格式转换,输出适应等离子屏驱动电路要求的数字基色信号。

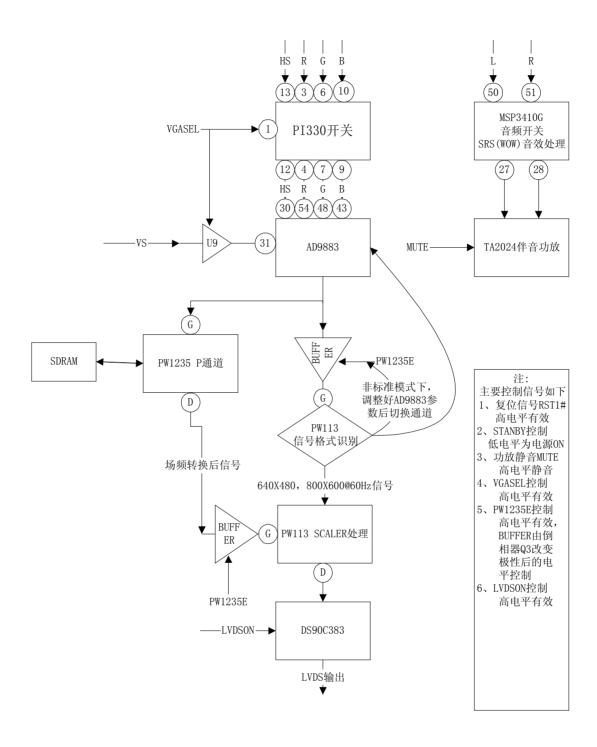

PW113 对输入的视频图像信号进行像素比率转换、图形自动最优化处理,然后经过存储器缓冲、比例缩放、色度矩阵电路、色度查找表、色度空间增益等处理,输出满足等离子显示屏规格的 852×480 分辨率的数字基色信号及相应的同步、时钟信号送至 DS90CF383 处理,变成低压差分信号送至等离子屏,控制等离子屏正确显示图像。

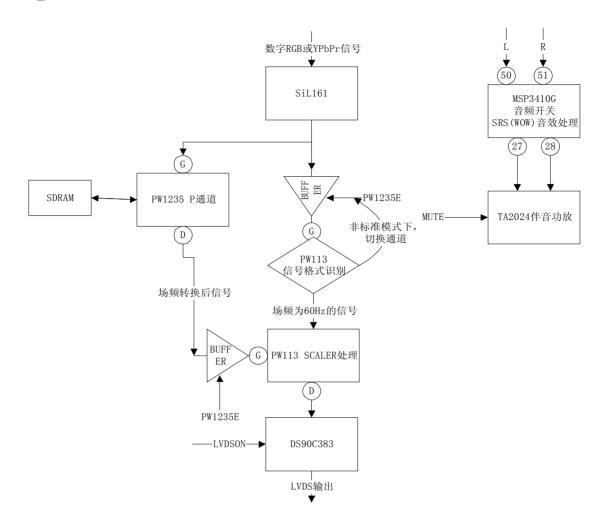
二、各信号源信号流程图


—) TV


二) AV


三) S-VIDEO


四) YCbCr


五) YPbPr

六) VGA

七) DVI

三、整机的系统控制过程:

接好交流电源输入后(本机电源插头为三芯结构,其中地线端要求有良好接地),首先待机电源工作,信号主板得到 5V-ST 电压,PW113 的各组电源开始正常供电,此时 LED 指示灯发出红光,PW113 在 V18、V33 电源正常后复位,完成系统初始化后,发出 STANDBY(L)信号,控制主电源开始工作,其它各组电源 VT9、VT5、AVCC、PVDD、AVDD、OVCC、CVCC、PVCC、DAVCC、AVDD、AVCC、DVDA、PVDD均开始正常,AD9883A、VPC3230、SiI161B、DS90CF383均加上了适当的工作电压,此外 LED 信号控制指示灯发出黄光并不断闪烁,表明系统控制正常。最后从 PW113 的 43 脚输出 LVDSON信号高电平,使 DS90CF383 开始工作。此后整机处于正常工作状态,输入源为前一次关机时使用的输入源。

1、当通过遥控器选择 VGA 模式时,PW113 通过 I²C 总线对 AD9883A 实施控制,同时对 Si I161B 和 VPC3230 进行使能控制,让它们工作在低功耗模式下,达到省电和降低干扰的目的。此时 PW113 输出的 VGASEL 信号将 PI5V330 置于 VGA 输入通道,此时若有 VGA 信号输入,经 AD9883A 处理后输出行场同步信号和数据信号,送至 PW113 检测处理,输出经过格式变换的数据经过 DS90CF383 差分发送器,变换为与等离子屏相适应的信号,等离子屏从而能正确重现图像;若无 VGA 信号输入,AD9883A 则不能检测到行场同步信号,因而无行场同步信号输出,经 PW113 系统控制后等离子屏在屏幕左上角显示 PC 图标,其余部分现黑屏,系统延时 60 秒后仍无信号输入,则屏幕提示进入"省电模式"工作状态,此时等离子显示屏不工作但 AD9883A 一直处于正常工作状态,在不停地检测 VGA 信号,因此本机在 VGA 模式下时

具有自动唤醒功能,即当 VGA 信号到来时本机可以脱离待机状态直接进入正常工作状态。

2、当通过遥控器选择 TV / AV / YCbCr 模式时, PW113 通过 I^2 C 总线对 VPC3230 实施控制, 另外 PW113 通过 I^2 C 总线控制 AD9883A 不工作(输出呈高阻状态),由于此时一体化高频头 N901、VPC3230、 DS90CF383 都已处于正常工作状态,当有视频信号输入时,等离子屏就能显示正常视频图像,当无视频信号输入时,在 PW113 的控制下,等离子屏呈蓝背景显示,如果无信号持续 15 分钟,则自动关机进入黑屏待机状态,需要注意的是它不具备自动唤醒功能。

3、当通过遥控器选择 DVI (数字 RGB) 模式时, PW113 对 Si I161B 实施控制, 同时对 VPC3230 进行使能控制, 让它工作在低功耗模式下, 另外 PW113 通过 I²C 总线控制 AD9883A 不工作(输出呈高阻状态), 因为 Si I161B、DS90CF383 都已处于正常工作状态, 当有 DVI 信号输入时等离子屏显示图像; 若无 DVI 信号,Si I161B 则无数字行场同步信号输出,经 PW113 检测后控制等离子屏在屏幕左上角显示 DVI 图标, 其余部分现黑屏, 系统延时 60 秒后仍无信号输入,则屏幕提示进入"省电模式"工作状态。此时 Si I161B 一直处于正常工作状态,在不停地检测 DVI 信号,因此本机在 DVI 模式下时具有自动唤醒功能,即当 DVI 信号到来时本机可以脱离待机状态直接进入正常工作状态。

四、 整机的供电系统:

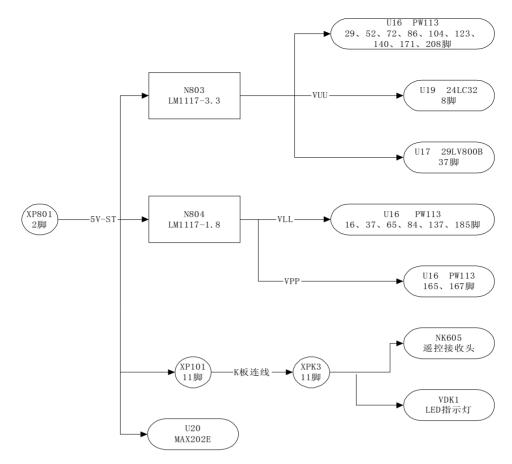
一)、主电源的供电情况如下:

D6V: 稳压为 5V 后为 VPV3230、AD9883 模拟电源;

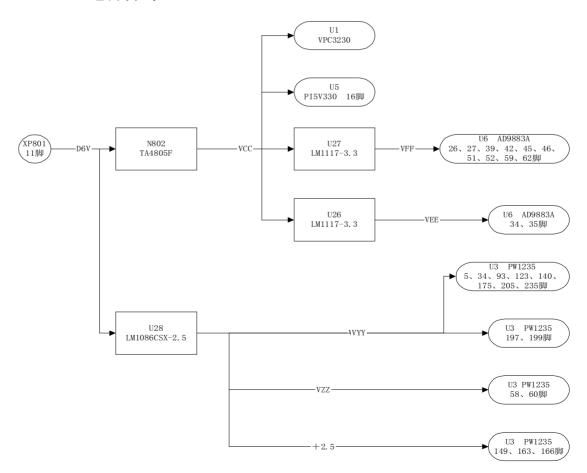
5V-ST: 待机电源, 供 PW113、AM29LV800BT (ROM)、24LC32、MAX202E:

VDD(3.3V): VPC3230、AD9883A、DS90CF383 电源:

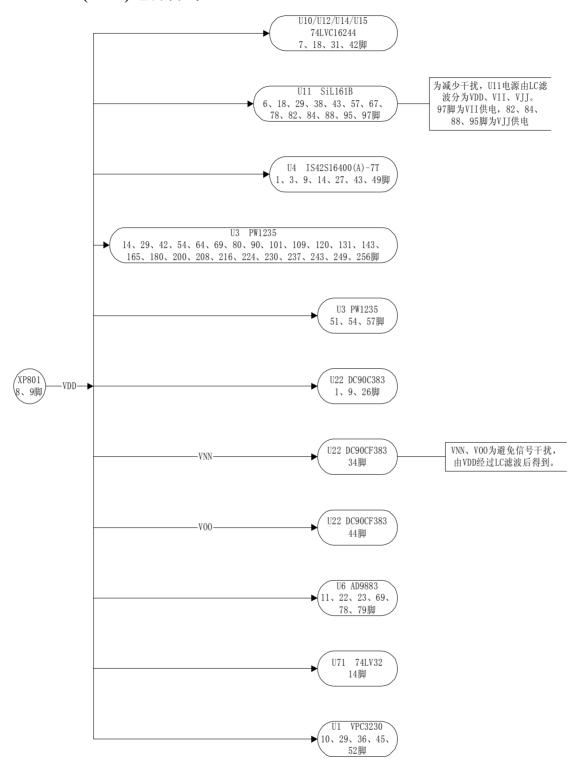
+32V: 高频头调谐电压;

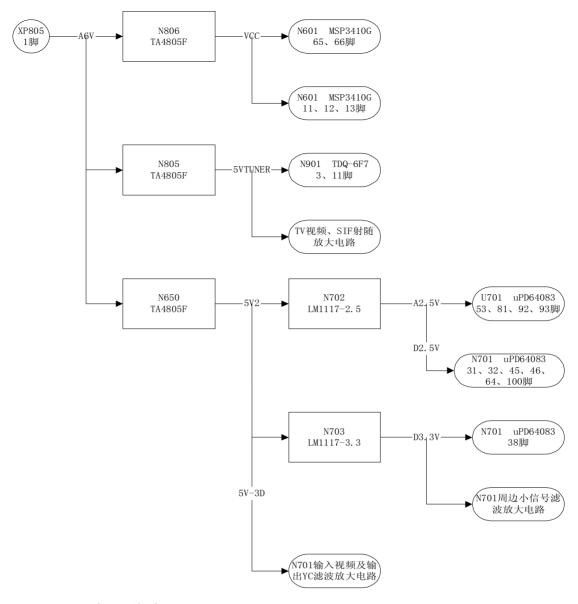

A6V: 稳压后提供 AV 板 5V 等电源;

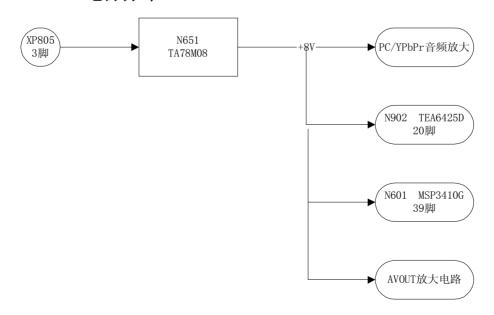
A12V: 稳压后提供 AV 板 8V 等电源:


12VAMP: 音频功放 TA2024 电源。

二)、整机主要电源组成与分布:


1、5V-ST 电源分布


2、D6V 电源分布


3、VDD(3.3V)电源分布

4、A6V 电源分布

5、A12V 电源分布

第四章 长虹等离子电视 PT4206 主要集成块维修数据

1、AD9883A 的维修数据如下 (在 VGA 状态下测量):

1 = 1 = 0 = 0 = 0 = 0	A 的维修致循列下(在 VGA 认然下测量): GDM8145 型万用表		
引脚号	atthet =	对地电阻(20K)	
1131 3	引脚电压(V)	红表笔测(黑表笔接地)	黑表笔测(红表笔接地)
1	0	∞	∞
2	0.14	∞	∞
3	2.38	∞	∞
4	2.44	0.41	0.41
5	2.44	0.41	0.41
6	2.44	0.41	0.41
7	3.0	0	0
8	3.26	∞	∞
9	1.22	0.44	0.44
10	0	0.44	0.44
11	3.29	0	0
12	0.12	0	0
13	2.37	3.73	3.73
14	2.45	3.72	3.72
15	2.43	3.74	3.74
16	1.26	0	0
17 18	2.39	0	0
	2.44	∞	∞
19	1.98	∞	∞
20	0	∞	∞
21	0	∞	∞
22	3.29	∞	∞
23	3.29	∞	∞
24	0	∞	∞
25	0	0	0
26	3.31	0.45	0.45
27	3.31	∞	∞
28	0	∞	∞
29	0.05	0.45	0.45
30	0.24	0	0
31	0.01	∞	∞
32	0	∞	∞
33	1.54	∞	∞
34	3.31	∞	∞
35	3.31	0	0
36	0	0.44	0.44
37	0.37	∞	∞
38	0	∞	∞
39	3.31	∞	∞
40	0	∞	∞
41	0	∞	∞
42	3.31	∞	∞
43	0.27	∞	∞
44	0.27		
44	U	∞	∞

45	3.31	0.44	0.44
46	3.31	0	0
47	0	∞	∞
48	0.27	∞	∞
49	0.57	∞	∞
50	0	∞	∞
51	3.31	0	0
52	3.31	0.44	0.44
53	0	∞	8
54	0.03	∞	∞
55	0	∞	∞
56	3.29	∞	∞
57	3.29	∞	∞
58	1.26	∞	∞
59	3.31	14.12	14.12
60	0	∞	∞
61	0	∞	∞
62	3.31	∞	∞
63	0	∞	∞
64	0.01	0	0
65	0.24	0	0
66	0.08	0.67	0.67
67	1.64	0.41	0.41
68	0	0	0
69	3.29	14.15	14.15
70	0.12	∞	∞
71	0.04	∞	∞
72	0.12	∞	∞
73	0.11	∞	∞
74	0.11	∞	∞
75	3.2	∞	∞
76	0.33	14.15	14.15
77	3.05	0	0
78	3.29	0.41	0.41
79	3.29	0	0
80	0	∞	∞

2、VPC3230 的维修数据如下(在 TV 状态下测量):

	· · · · · · · · · · · · · · · · · · ·				
	GDM8145 型万用表				
引脚号	引脚电压(V)	对地电阻	l(20K)		
	7104 电压(V)	红表笔测 (黑表笔接地)	黑表笔测(红表笔接地)		
1	1.56	∞	∞		
2	1.42	∞	8		
3	1.53(跳变)	∞	∞		
4	2.53	0.41	0.41		
5	2.53	0.41	0.41		
6	2.53	0.41	0.41		
7	0	0	0		
8	0	∞	∞		
9	3.29	0.63	0.63		
10	3.29	0.64	0.64		

11	0	0	0
12	0	0	0
13	3.29	3.93	3.93
14	3.09	3.93	3.93
15	3.29	3.94	3.94
16	0	0	0
17	0	0	0
18	0	∞	∞
19	2.57	∞	∞
20	2.57	∞	∞
21	0.01	8	∞
22	0	∞	∞
23	0	∞	∞
24	1.63	∞	∞
25	0.03	0.01	0.01
26	3.25	0.65	0.65
27	4.6	∞	∞
28	1.61	∞	∞
29	3.29	0.63	0.63
30	0	0	0
31	1.99	∞	∞
32	0.82	8	∞
33	0.83	∞	∞
34	1.08	∞	∞
35	0	0	0
36	3.29	0.63	0.63
37	1.13	∞	∞
38	1.08	∞	∞
39	1.13	∞	∞
40	1.24	∞	∞
41	0	∞	∞
42	0	∞	∞
43	0	8	∞
44	0	∞	∞
45	3.28	∞	∞
46	0	0	0
47	0	∞	∞
48	0	∞	∞
49	0	∞	∞
50	0	∞	∞
51	0	∞	∞
52	3.29	∞	∞
53	1.65	∞	∞
54	2.57	∞	∞
55	0.1	∞	∞
56	0.12	∞	∞
57	0.05	∞	∞
58	3.28	∞	∞
59	5.05	∞ ∞	∞ ∞
	2.45		
60	2.43	∞	∞

61	0	∞	∞
62	2.27	∞	∞
63	2.36	∞	∞
64	0	0	0
65	0	0	0
66	0	0.66	0.66
67	2.53	0.42	0.42
68	0	0	0
69	5.05	12.69	12.69
70	1.62	8	∞
71	1.37	∞	∞
72	1.51	∞	∞
73	1.37	∞	∞
74	1.49	∞	∞
75	1.43	∞	8
76	5	∞	8
77	0	∞	∞
78	2.53	0.41	0.41
79	0	∞	8
80	0	0	0

3、PW113 的维修数据如下:

		GDM8145 型万用表		
引脚号	引脚电压(V)	对地电图	对地电阻(20K)	
	7104 电压(V)	红表笔测(黑表笔接地)	黑表笔测(红表笔接地)	
1	0	0	0	
2	0	∞	∞	
3	0	∞	∞	
4	0	∞	∞	
5	0	∞	∞	
6	0	∞	∞	
7	0	∞	∞	
8	0	∞	∞	
9	0	∞	∞	
10	0	∞	∞	
11	0	∞	∞	
12	0	∞	∞	
13	0	∞	∞	
14	0	∞	∞	
15	0	∞	∞	
16	1.79	0.42	0.42	
17	0	∞	∞	
18	0	∞	∞	
19	0	∞	∞	
20	0	∞	∞	
21	0	∞	∞	
22	0	∞	∞	
23	0	∞	∞	
24	0	∞	∞	
25	0	∞	∞	

26	0	∞	∞
27	0	∞	∞
28 29	3.29	0.64	0.64
30	3.29	0.64	0.64
31	0	∞	∞
32	0		
		∞	∞
33	0	∞	∞
34	0	∞	∞
35	0	∞	∞
36	0	∞	∞
37	1.79	0.42	0.42
38	0	0	0
39	2.74	10.63	10.63
40	2.73	10.67	10.67
41	2.73	10.71	10.71
42	2.74	10.56	10.56
43	2.74	10.68	10.68
44	2.75	10.53	10.53
45	2.74	10.61	10.61
46	0	∞	∞
47	1.28	∞	∞
48	1.17	∞	∞
49	1.09	∞	∞
50	1.13	∞	∞
51	1.28	∞	∞
52	3.29	0.64	0.64
53	0	0	0
54	0.89	∞	∞
55	1.01	∞	∞
56	1.49	∞	∞
57	0	∞	∞
58	0	∞	∞
59	0	∞	∞
60	0	∞	∞
61	3.29	∞	∞
62	0	∞	∞
63	3.29	∞	∞
64	3.28	∞	∞
65	1.79	∞	∞
66	0	0	0
67	0.98	17.0	17.0
68	3.29	∞	∞
69	1.65	∞	∞
70	0		
		∞	∞
71	1.70	0.46	∞
72	3.29	0.46	0.46
73	0 06	0	0
74	0.06	∞	∞
75	0.12	∞	∞
76	1.18	∞	∞

77 1.13 ∞ ∞ 79 0.77 ∞ ∞ 80 1.32 ∞ ∞ 81 0 ∞ ∞ 82 1.57 ∞ ∞ 83 0 ∞ ∞ 84 1.79 ∞ ∞ 85 0 0 0 86 3.29 0.46 0.46 87 0 0 0 88 1.29 ∞ ∞ 89 1.25 ∞ ∞ 90 0.26 ∞ ∞ 91 0.45 ∞ ∞ 92 1.26 ∞ ∞ 93 1.43 ∞ ∞ 94 1.42 ∞ ∞ 95 1.44 ∞ ∞ 98 0.45 ∞ ∞ 99 0.42 ∞ ∞ 100 1.14 ∞ <th></th> <th></th> <th></th> <th></th>				
79	77	1.13	∞	∞
80 1.32 ∞ ∞ 81 0 ∞ ∞ 82 1.57 ∞ ∞ 83 0 ∞ ∞ 84 1.79 ∞ ∞ 85 0 0 0 0 86 3.29 0.46 0.46 0.46 87 0 0 0 0 0 88 1.29 ∞ ∞ ∞ ∞ 90 0.26 ∞ ∞ ∞ ∞ 90 0.26 ∞ ∞ ∞ ∞ 91 0.45 ∞ ∞ ∞ ∞ 92 1.26 ∞ ∞ ∞ ∞ 93 1.43 ∞ ∞ ∞ ∞ 94 1.42 ∞ ∞ ∞ ∞ 95 1.44 ∞ ∞ ∞ ∞ 99 0.42 ∞ ∞ ∞ ∞ 100 1.14 ∞ ∞ ∞ ∞	78	0.61	∞	∞
81 0 ∞ ∞ 82 1.57 ∞ ∞ 83 0 ∞ ∞ 84 1.79 ∞ ∞ 85 0 0 0 86 3.29 0.46 0.46 87 0 0 0 88 1.29 ∞ ∞ 89 1.25 ∞ ∞ 90 0.26 ∞ ∞ 91 0.45 ∞ ∞ 92 1.26 ∞ ∞ 93 1.43 ∞ ∞ 94 1.42 ∞ ∞ 95 1.44 ∞ ∞ 96 1.31 ∞ ∞ 98 0.45 ∞ ∞ 99 0.42 ∞ ∞ 100 1.14 ∞ ∞ 101 1.36 ∞ ∞ 102 1.44 ∞ </td <td>79</td> <td>0.77</td> <td>∞</td> <td>∞</td>	79	0.77	∞	∞
82 1.57 ∞ ∞ 83 0 ∞ ∞ 84 1.79 ∞ ∞ 85 0 0 0 86 3.29 0.46 0.46 87 0 0 0 88 1.29 ∞ ∞ 90 0.26 ∞ ∞ 91 0.45 ∞ ∞ 92 1.26 ∞ ∞ 93 1.43 ∞ ∞ 94 1.42 ∞ ∞ 95 1.44 ∞ ∞ 96 1.31 ∞ ∞ 99 0.42 ∞ ∞ 99 0.42 ∞ ∞ 99 0.42 ∞ ∞ 100 1.14 ∞ ∞ 101 1.36 ∞ ∞ 102 1.44 ∞ ∞ 103 1.45 ∞ ∞ 104 3.29 0.46 0.46 105<	80	1.32	∞	∞
82 1.57 ∞ ∞ 83 0 ∞ ∞ 84 1.79 ∞ ∞ 85 0 0 0 86 3.29 0.46 0.46 87 0 0 0 88 1.29 ∞ ∞ 90 0.26 ∞ ∞ 91 0.45 ∞ ∞ 92 1.26 ∞ ∞ 93 1.43 ∞ ∞ 94 1.42 ∞ ∞ 95 1.44 ∞ ∞ 96 1.31 ∞ ∞ 99 0.42 ∞ ∞ 99 0.42 ∞ ∞ 99 0.42 ∞ ∞ 100 1.14 ∞ ∞ 101 1.36 ∞ ∞ 102 1.44 ∞ ∞ 103 1.45 ∞ ∞ 104 3.29 0.46 0.46 105<	81	0	∞	∞
83 0 ∞ ∞ 84 1.79 ∞ ∞ 85 0 0 0 86 3.29 0.46 0.46 87 0 0 0 88 1.29 ∞ ∞ 90 0.26 ∞ ∞ 91 0.45 ∞ ∞ 92 1.26 ∞ ∞ 93 1.43 ∞ ∞ 94 1.42 ∞ ∞ 95 1.44 ∞ ∞ 96 1.31 ∞ ∞ 97 1.18 ∞ ∞ 98 0.45 ∞ ∞ 99 0.42 ∞ ∞ 100 1.14 ∞ ∞ 101 1.36 ∞ ∞ 102 1.44 ∞ ∞ 103 1.45 ∞ ∞ 104 3.29 0.46 0.46 105 0 0 0 106 <td></td> <td></td> <td>∞</td> <td>∞</td>			∞	∞
84 1.79 \$\infty\$ \$\infty\$ 85 0 0 0 0 86 3.29 0.46 0.46 0.46 87 0 0 0 0 88 1.29 \$\infty\$ \$\infty\$ \$\infty\$ 89 1.25 \$\infty\$ \$\infty\$ \$\infty\$ 90 0.26 \$\infty\$ \$\infty\$ \$\infty\$ 91 0.45 \$\infty\$ \$\infty\$ \$\infty\$ 92 1.26 \$\infty\$ \$\infty\$ \$\infty\$ 93 1.43 \$\infty\$ \$\infty\$ \$\infty\$ 94 1.42 \$\infty\$ \$\infty\$ \$\infty\$ 95 1.44 \$\infty\$ \$\infty\$ \$\infty\$ 98 0.45 \$\infty\$ \$\infty\$ \$\infty\$ 98 0.42 \$\infty\$ \$\infty\$ \$\infty\$ 100 1.14 \$\infty\$ \$\infty\$ 101 1.36 \$\inft			∞	∞
85 0 0 0 0.46 0.46 0.46 87 0 <t< td=""><td></td><td></td><td>∞</td><td>∞</td></t<>			∞	∞
86 3.29 0.46 0.46 87 0 0 0 88 1.29 ∞ ∞ 90 0.26 ∞ ∞ 90 0.26 ∞ ∞ 91 0.45 ∞ ∞ 92 1.26 ∞ ∞ 93 1.43 ∞ ∞ 94 1.42 ∞ ∞ 95 1.44 ∞ ∞ 96 1.31 ∞ ∞ 97 1.18 ∞ ∞ 98 0.45 ∞ ∞ 99 0.42 ∞ ∞ 100 1.14 ∞ ∞ 101 1.36 ∞ ∞ 102 1.44 ∞ ∞ 103 1.45 ∞ ∞ 104 3.29 0.46 0.46 105 0 0 0 106 1.07				
87 0 0 0 88 1.29 ∞ ∞ 90 0.26 ∞ ∞ 91 0.45 ∞ ∞ 92 1.26 ∞ ∞ 93 1.43 ∞ ∞ 94 1.42 ∞ ∞ 95 1.44 ∞ ∞ 96 1.31 ∞ ∞ 97 1.18 ∞ ∞ 98 0.45 ∞ ∞ 99 0.42 ∞ ∞ 100 1.14 ∞ ∞ 101 1.36 ∞ ∞ 102 1.44 ∞ ∞ 103 1.45 ∞ ∞ 104 3.29 0.46 0.46 105 0 0 0 106 1.07 ∞ ∞ 108 3.28 ∞ ∞ 109 3.28				
89 1.25 ∞ ∞ 90 0.26 ∞ ∞ 91 0.45 ∞ ∞ 92 1.26 ∞ ∞ 93 1.43 ∞ ∞ 94 1.42 ∞ ∞ 95 1.44 ∞ ∞ 96 1.31 ∞ ∞ 98 0.45 ∞ ∞ 99 0.42 ∞ ∞ 100 1.14 ∞ ∞ 101 1.36 ∞ ∞ 102 1.44 ∞ ∞ 103 1.45 ∞ ∞ 104 3.29 0.46 0.46 105 0 0 0 106 1.07 ∞ ∞ 107 1.69 ∞ ∞ 108 3.28 ∞ ∞ 110 2.72 ∞ ∞ 111 1.18 ∞ ∞ 112 1.09 ∞ ∞ <				
90 0.26 ∞ ∞ 91 0.45 ∞ ∞ 92 1.26 ∞ ∞ 93 1.43 ∞ ∞ 94 1.42 ∞ ∞ 95 1.44 ∞ ∞ 96 1.31 ∞ ∞ 98 0.45 ∞ ∞ 99 0.42 ∞ ∞ 100 1.14 ∞ ∞ 101 1.36 ∞ ∞ 102 1.44 ∞ ∞ 103 1.45 ∞ ∞ 104 3.29 0.46 0.46 105 0 0 0 106 1.07 ∞ ∞ 107 1.69 ∞ ∞ 108 3.28 ∞ ∞ 109 3.28 ∞ ∞ 110 2.72 ∞ ∞ 111 1.18 <td>88</td> <td>1.29</td> <td>∞</td> <td>∞</td>	88	1.29	∞	∞
91 0.45 ∞ ∞ 92 1.26 ∞ ∞ 93 1.43 ∞ ∞ 94 1.42 ∞ ∞ 95 1.44 ∞ ∞ 96 1.31 ∞ ∞ 97 1.18 ∞ ∞ 98 0.45 ∞ ∞ 99 0.42 ∞ ∞ 100 1.14 ∞ ∞ 101 1.36 ∞ ∞ 102 1.44 ∞ ∞ 103 1.45 ∞ ∞ 104 3.29 0.46 0.46 105 0 0 0 106 1.07 ∞ ∞ 108 3.28 ∞ ∞ 109 3.28 ∞ ∞ 110 2.72 ∞ ∞ 111 1.18 ∞ ∞ 112 1.09 ∞ ∞ 113 0.64 ∞ ∞	89	1.25	∞	∞
91 0.45 ∞ ∞ 92 1.26 ∞ ∞ 93 1.43 ∞ ∞ 94 1.42 ∞ ∞ 95 1.44 ∞ ∞ 96 1.31 ∞ ∞ 97 1.18 ∞ ∞ 98 0.45 ∞ ∞ 99 0.42 ∞ ∞ 100 1.14 ∞ ∞ 101 1.36 ∞ ∞ 102 1.44 ∞ ∞ 103 1.45 ∞ ∞ 104 3.29 0.46 0.46 105 0 0 0 106 1.07 ∞ ∞ 108 3.28 ∞ ∞ 109 3.28 ∞ ∞ 110 2.72 ∞ ∞ 111 1.18 ∞ ∞ 112 1.09 ∞ ∞ 113 0.64 ∞ ∞	90	0.26	∞	∞
92 1.26 ∞ ∞ 93 1.43 ∞ ∞ 94 1.42 ∞ ∞ 95 1.44 ∞ ∞ 96 1.31 ∞ ∞ 97 1.18 ∞ ∞ 98 0.45 ∞ ∞ 99 0.42 ∞ ∞ 100 1.14 ∞ ∞ 101 1.36 ∞ ∞ 102 1.44 ∞ ∞ 103 1.45 ∞ ∞ 104 3.29 0.46 0.46 105 0 0 0 106 1.07 ∞ ∞ 107 1.69 ∞ ∞ 108 3.28 ∞ ∞ 109 3.28 ∞ ∞ 110 2.72 ∞ ∞ 111 1.18 ∞ ∞ 112 1.09 ∞ ∞ 113 0.64 ∞ ∞	91		∞	∞
93 1.43 ∞ ∞ 94 1.42 ∞ ∞ 95 1.44 ∞ ∞ 96 1.31 ∞ ∞ 97 1.18 ∞ ∞ 98 0.45 ∞ ∞ 99 0.42 ∞ ∞ 100 1.14 ∞ ∞ 101 1.36 ∞ ∞ 102 1.44 ∞ ∞ 103 1.45 ∞ ∞ 104 3.29 0.46 0.46 105 0 0 0 106 1.07 ∞ ∞ 107 1.69 ∞ ∞ 108 3.28 ∞ ∞ 109 3.28 ∞ ∞ 110 2.72 ∞ ∞ 111 1.18 ∞ ∞ 112 1.09 ∞ ∞ 113 0.64 ∞ ∞ 114 0.78 ∞ ∞			∞	∞
94 1.42 ∞ ∞ 95 1.44 ∞ ∞ 96 1.31 ∞ ∞ 97 1.18 ∞ ∞ 98 0.45 ∞ ∞ 99 0.42 ∞ ∞ 100 1.14 ∞ ∞ 101 1.36 ∞ ∞ 102 1.44 ∞ ∞ 103 1.45 ∞ ∞ 104 3.29 0.46 0.46 105 0 0 0 106 1.07 ∞ ∞ 107 1.69 ∞ ∞ 108 3.28 ∞ ∞ 109 3.28 ∞ ∞ 110 2.72 ∞ ∞ 111 1.18 ∞ ∞ 112 1.09 ∞ ∞ 113 0.64 ∞ ∞ 114 0.78 ∞ ∞ 115 1.39 ∞ ∞				
95 1.44 ∞ ∞ 96 1.31 ∞ ∞ 97 1.18 ∞ ∞ 98 0.45 ∞ ∞ 99 0.42 ∞ ∞ 100 1.14 ∞ ∞ 101 1.36 ∞ ∞ 102 1.44 ∞ ∞ 103 1.45 ∞ ∞ 104 3.29 0.46 0.46 105 0 0 0 106 1.07 ∞ ∞ 107 1.69 ∞ ∞ 108 3.28 ∞ ∞ 109 3.28 ∞ ∞ 110 2.72 ∞ ∞ 111 1.18 ∞ ∞ 112 1.09 ∞ ∞ 113 0.64 ∞ ∞ 114 0.78 ∞ ∞ 115 1.39 ∞ ∞ 116 1.40 ∞ ∞				
96 1.31 ∞ ∞ 97 1.18 ∞ ∞ 98 0.45 ∞ ∞ 99 0.42 ∞ ∞ 100 1.14 ∞ ∞ 101 1.36 ∞ ∞ 102 1.44 ∞ ∞ 103 1.45 ∞ ∞ 104 3.29 0.46 0.46 105 0 0 0 106 1.07 ∞ ∞ 107 1.69 ∞ ∞ 108 3.28 ∞ ∞ 109 3.28 ∞ ∞ 110 2.72 ∞ ∞ 111 1.18 ∞ ∞ 112 1.09 ∞ ∞ 113 0.64 ∞ ∞ 114 0.78 ∞ ∞ 115 1.39 ∞ ∞ 116 1.40 ∞ ∞ 117 1.57 ∞ ∞				
97 1.18 ∞ ∞ 98 0.45 ∞ ∞ 99 0.42 ∞ ∞ 100 1.14 ∞ ∞ 101 1.36 ∞ ∞ 102 1.44 ∞ ∞ 103 1.45 ∞ ∞ 104 3.29 0.46 0.46 105 0 0 0 106 1.07 ∞ ∞ 107 1.69 ∞ ∞ 108 3.28 ∞ ∞ 109 3.28 ∞ ∞ 110 2.72 ∞ ∞ 111 1.18 ∞ ∞ 112 1.09 ∞ ∞ 113 0.64 ∞ ∞ 114 0.78 ∞ ∞ 115 1.39 ∞ ∞ 116 1.40 ∞ ∞ 117 1.57 ∞ ∞ 118 1.62 ∞ ∞				
98 0.45 ∞ ∞ 100 1.14 ∞ ∞ 101 1.36 ∞ ∞ 102 1.44 ∞ ∞ 103 1.45 ∞ ∞ 104 3.29 0.46 0.46 105 0 0 0 106 1.07 ∞ ∞ 107 1.69 ∞ ∞ 108 3.28 ∞ ∞ 109 3.28 ∞ ∞ 110 2.72 ∞ ∞ 111 1.18 ∞ ∞ 112 1.09 ∞ ∞ 113 0.64 ∞ ∞ 114 0.78 ∞ ∞ 115 1.39 ∞ ∞ 116 1.40 ∞ ∞ 117 1.57 ∞ ∞ 118 1.62 ∞ ∞ 119 1.29 ∞ ∞ 120 1.25 ∞ ∞ <tr< td=""><td></td><td></td><td></td><td></td></tr<>				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			∞	∞
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			∞	∞
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			∞	∞
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
125 1.24 ∞ ∞				
126 ∞ ∞				
	126	0	∞	∞

127	1.34	∞	∞
128	1.45	∞	∞
129	1.31	∞	∞
130	1.08	∞	∞
131	0.44	∞	∞
132	0.40	∞	∞
133	1.08	∞	∞
134	1.35	∞	∞
135	1.45		
		∞	∞
136	1.49	0.42	0.42
137	1.80	0.42	0.42
138 139	3.29	3.76	3.76
140	3.29	0.46	0.46
141	0	0.40	0.40
142	0	0	0
143	0	 ∞	∞
144	0	∞	∞
145	0	∞	∞
146	0	∞	∞
147	0	∞	∞
147	1.05		
149	1.03	∞	∞
		∞	∞
150	1.01	∞	∞
151	1.16	∞	∞
152	1.17	∞	∞
153	1.59	∞	∞
154	1.69	∞	∞
155	1.58	∞	∞
156	1.10	∞	∞
157	1.45	∞	∞
158	1.25	∞	∞
159	1.30	∞	∞
160	1.56	∞	∞
161	1.96	∞	∞
162	1.63	∞	∞
163	1.79	∞	∞
164	1.86	∞	∞
165	1.79	0.42	0.42
166	0	0	0
167	1.79	0.47	0.47
168	0	0	0
169	1.55	∞	∞
170	1.65	∞	∞
171	3.29	0.44	0.44
172	0	0	0
173	0.25(跳变)	∞	∞
174	0.21(跳变)	∞	∞
175	1.74	∞	∞
176	0.17(跳变)	∞	∞
	(:/-/-/-/	1	1

177
179 0.66 ∞ ∞ 180 2.17 ∞ ∞ 181 0.32 ∞ ∞ 182 2.27 ∞ ∞ 183 0.63(跳变) ∞ ∞ 184 1.49 ∞ ∞ 185 1.79 0.42 0.42 186 0 0 0 187 2.59 ∞ ∞ 188 1.97 ∞ ∞ 189 1.58 ∞ ∞ 190 1.17 ∞ ∞ 191 0 ∞ ∞
180 2.17 ∞ ∞ 181 0.32 ∞ ∞ 182 2.27 ∞ ∞ 183 0.63(跳变) ∞ ∞ 184 1.49 ∞ ∞ 185 1.79 0.42 0.42 186 0 0 0 187 2.59 ∞ ∞ 188 1.97 ∞ ∞ 189 1.58 ∞ ∞ 190 1.17 ∞ ∞ 191 0 ∞ ∞
181 0.32 ∞ ∞ 182 2.27 ∞ ∞ 183 $0.63(跳变)$ ∞ ∞ 184 1.49 ∞ ∞ 185 1.79 0.42 0.42 186 0 0 0 187 2.59 ∞ ∞ 188 1.97 ∞ ∞ 189 1.58 ∞ ∞ 190 1.17 ∞ ∞
182 2.27 ∞ ∞ 183 0.63(跳变) ∞ ∞ 184 1.49 ∞ ∞ 185 1.79 0.42 0.42 186 0 0 0 187 2.59 ∞ ∞ 188 1.97 ∞ ∞ 189 1.58 ∞ ∞ 190 1.17 ∞ ∞ 191 0 ∞ ∞
183 0.63 (跳变) ∞ ∞ 184 1.49 ∞ ∞ 185 1.79 0.42 0.42 186 0 0 0 187 2.59 ∞ ∞ 188 1.97 ∞ ∞ 189 1.58 ∞ ∞ 190 1.17 ∞ ∞ 191 0 ∞ ∞
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
190 1.17 ∞ ∞ 191 0 ∞ ∞
191 0 ∞ ∞
102 144
1.44
193 0 3.4 3.4
194 0 ∞ ∞
195 3.29 ∞ ∞
196 2.31 ∞ ∞
197 3.29 ∞ ∞
198 3.29 ∞ ∞
199 3.29 ∞ ∞
200 0.06 ∞ ∞
201 0.21(跳变) ∞ ∞
202 2.35 ∞ ∞
203 4.98 12.08 12.08
204 3.28 ∞ ∞
205 2.47 ∞ ∞
206 3.10 ∞ ∞
207 3.14 3.73 3.72
208 0 0.44 0.44

4、DSC90CF383 的维修数据如下:

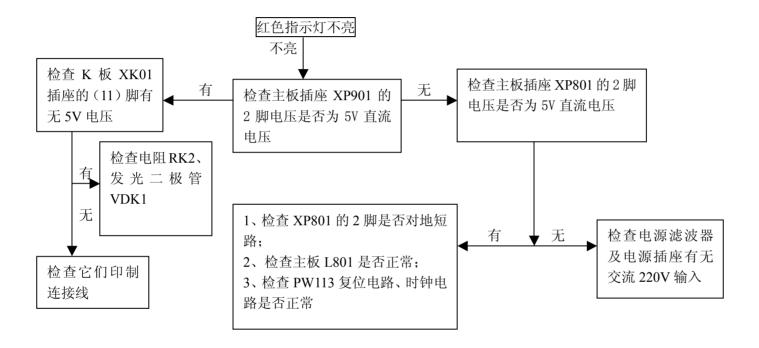
		GDM8145 型万用表	
引脚号	引脚电压(V)	对地电阻(20K)	
	71加电压(1)	红表笔测(黑表笔接地)	黑表笔测(红表笔接地)
1	3.27	0.44	0.44
2	1.43	8	∞
3	0.79	8	∞
4	1.12	∞	∞
5	0	0	0
6	1.1	∞	∞
7	1.06	∞	∞
8	0.96	∞	∞
9	3.27	∞	∞
10	1.41	∞	∞
11	1.15	∞	∞

12	0.94	∞	∞
13	0	0	0
14	0.90	∞	∞
15	1.16	∞	∞
16	0.87	∞	∞
17	3.27	0.44	0.44
18	1.33	∞	∞
19	1.15	∞	∞
20	1.13	∞	∞
21	0	0	0
22	1.16	∞	∞
23	0.99	∞	∞
24	0.85	∞	∞
25	0.89	∞	∞
26	3.27	∞	∞
27	3.28	∞	∞
28	3.28	∞	∞
29	0	0	0
30	2.27	∞	∞
31	1.23	∞	∞
32	3.29	∞	∞
33	0	0	0
34	3.27	0.44	0.44
35	0	0	0
36	0	0	0
37	1.23	∞	∞
38	1.37	∞	∞
39	1.31	∞	∞
40	1.26	∞	∞
41	1.31	∞	∞
42	1.26	∞	∞
43 44	0	0	0
	3.19	0.44	0.44
45	1.22	∞	∞
46	1.35	∞	∞
47	1.24	∞	∞
48	1.37	∞	∞
49	0	0	0
50	0.98	∞	∞
51	1.13	∞	∞
52	1.11	∞	∞
53	0	0	0
54	1.06	∞	∞
55	1.24	∞	∞
56	0.90	∞	∞

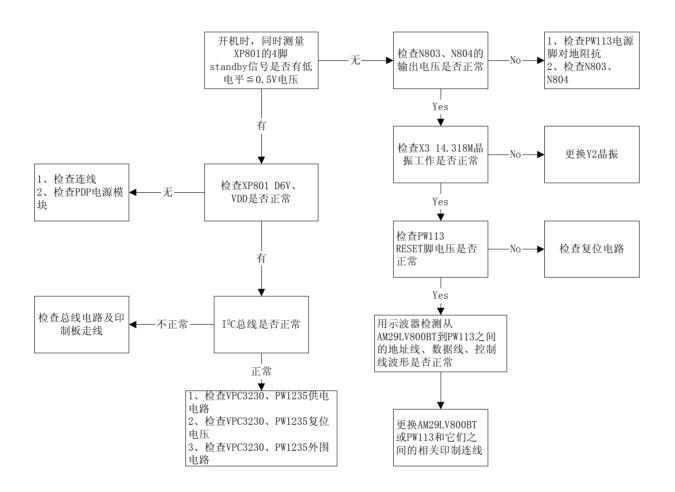
5、Si I 161B 的维修数据如下 (在 DVI 状态下测量):

引脚号	GDM8145 型万用表		
	引脚电压(V)	对地电阻(20K)	
		红表笔测(黑表笔接地)	黑表笔测(红表笔接地)

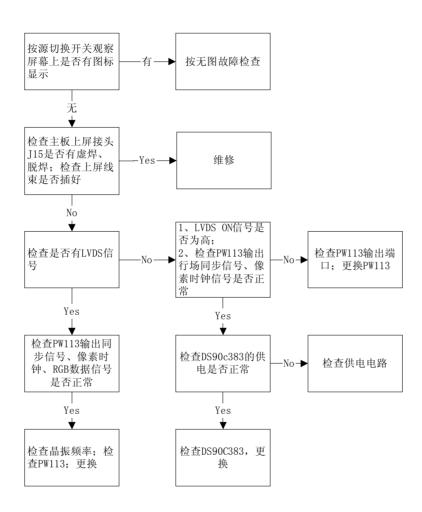
1	0	0
2	10.59	10.59
3	0.60	0.60
4	0	0
5	0	0
6	0.60	0.60
7	0.60	0.60
8	∞	∞
9	∞	∞
10	∞	∞
11	∞	∞
12	∞	∞
13	∞	∞
14	∞	∞
15	∞	∞
16	∞	∞
17	∞	∞
18	0.59	0.59
19	0.57	0.57
20	∞	∞
21	∞	∞
22	∞	∞
23	∞	∞
24	∞	∞
25	∞	∞
26	∞	∞
27		
		∞
28 29	0 0.59	0 0.59
30	0.39	0.39 ∞
31		∞
32		
	∞	∞
33		∞
34	∞	∞
35	∞	∞
36	∞	∞
37	©	∞
38	0.59	0.59
39	0	0
40	∞	∞
41	∞	∞
42	∞ - • • • • • • • • • • • • • • • • • • •	∞
43	0.59	0.59
44	∞	∞
45	0	0
46	∞	∞
47	∞	∞
48	∞	∞
49	∞	∞
50	∞	∞

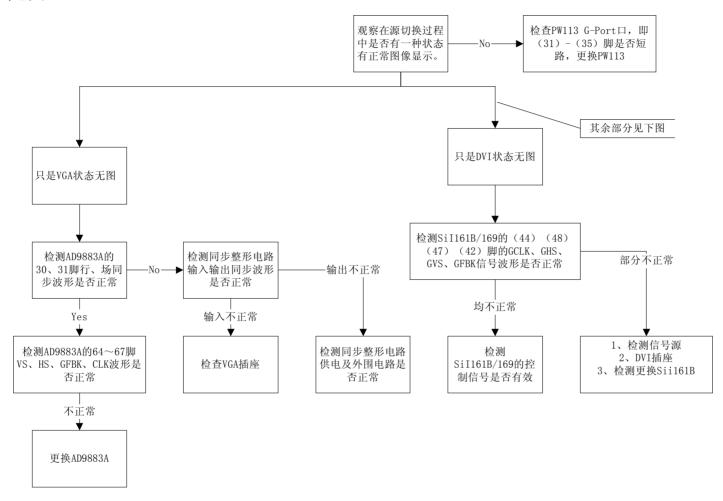

51	∞	∞
52	∞	∞
53	∞	∞
54	∞	∞
55		
	∞	∞
56	∞	∞
57	∞	∞
58	0	0
59	∞	∞
60	∞	∞
61	∞	∞
62	∞	∞
63	∞	∞
64	∞	∞
65	∞	∞
66	∞	∞
67	0.44	0.44
68	0	0
69	∞	∞
70	∞	∞
71	∞	∞
72	∞	∞
73	∞	∞
74	∞	∞
75	∞	∞
76	0	0
77	∞	∞
78	0.53	0.53
79	0.55	0
80	∞	∞
81	∞	∞
82	0.53	0.53
83	0	0
84	0.53	0.53
85	∞	∞
86	∞	∞
87	0	0
88	0.53	0.53
89	0	0
90	∞	∞
91	∞	∞
92	0	0
93	∞	∞
94		
95	∞	∞
96	∞ 0.53	∞ 0.53
	0.53 0.92	0.53 0.92
97	0.53 0.92 0.53	0.53 0.92 0.53
97 98	0.53 0.92 0.53 0	0.53 0.92 0.53 0
97	0.53 0.92 0.53	0.53 0.92 0.53

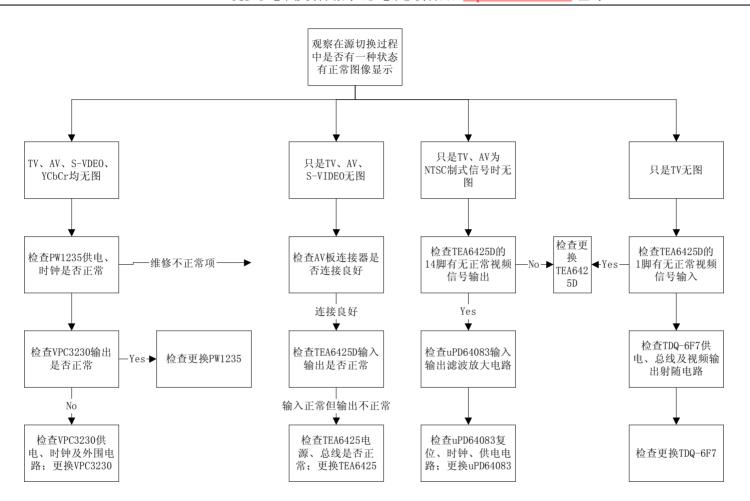
6、TDQ-6F7 的维修数据如下 (在 TV 状态下测量):


	、104 017 11年12993加州(日11 1771年)					
引脚号	GDM8145 型万用表					
	引脚电压(V)	对地电阻(20K)				
		红表笔测 (黑表笔接地)	黑表笔测(红表笔接地)			
1	32	∞	∞			
2	5.0	3.41	3.41			
3	0	0	0			
4	3.3	∞	8			
5	0	∞	∞			
6	4.7	10.0	10.0			
7	4.5	10.3	10.3			
8	1.1	∞	8			
9	1.5	1.06	1.06			
10	5.0	3.41	3.41			
11	2.1	15.42	15.42			

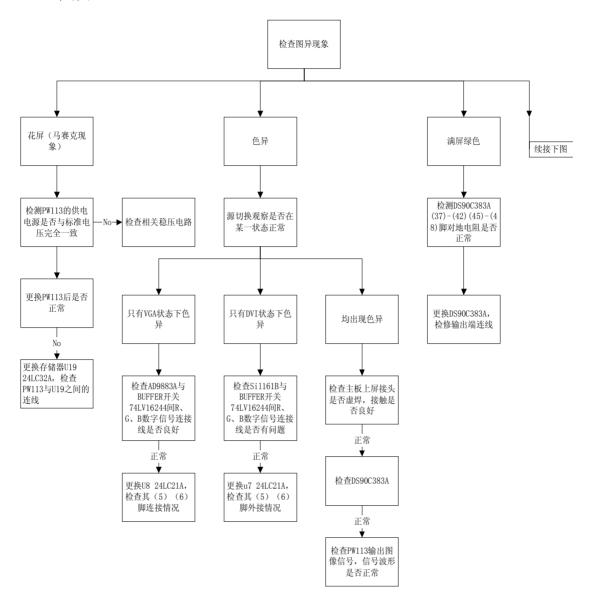
第五章 长虹等离子电视 PT4206 典型故障维修流程图


一、红色指示灯不亮

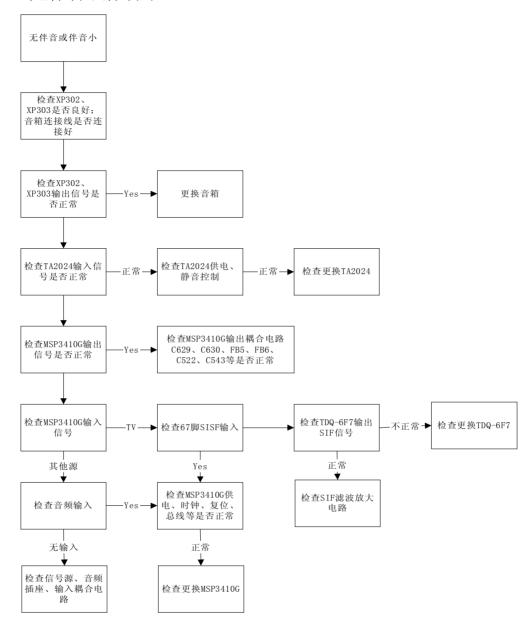

二、红色指示灯亮,但开机后指示灯不变为黄色且黑屏



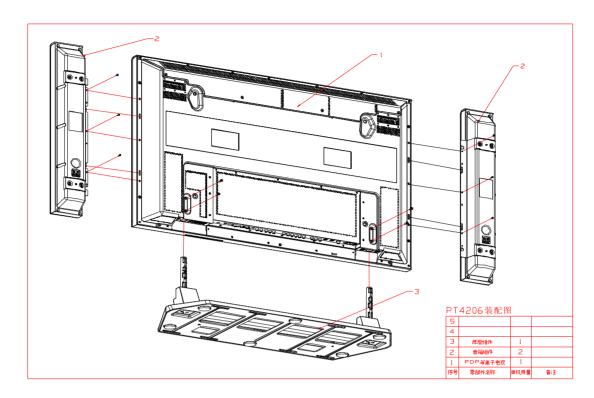
三、红色指示灯亮, 开机后指示灯变色但黑屏

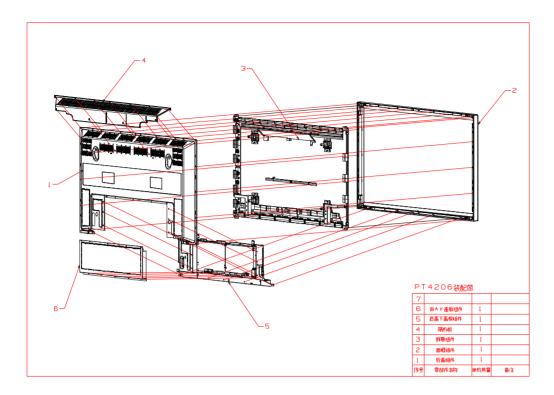


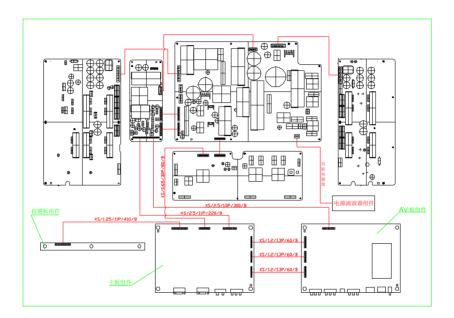
四、无图:



五、图异




六、无伴音或伴音小



附录一、

附录二、

