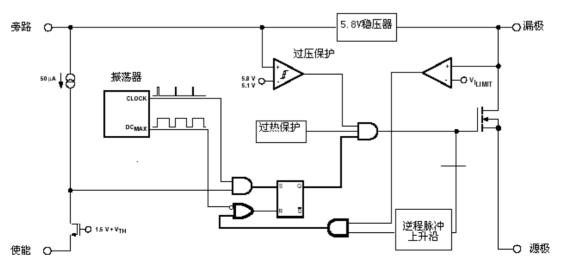

创维 CRT 背投彩电 680HD 机芯原理与维修



二、开关稳压电源电路描述

本机芯电源由副电源和主开关电源两部分组成。220V 市电经 R870、D875、C805、L870、C806、L873 滤波后, 一路经 R801 送 D801、C802、C803、C804 桥式整流滤波电路,一路经 R6704 限流后送往副电源电路。

(一)副电源及待机控制电路

220V 经 R6704 限流,D6712 整流,C6715、C883 滤波后,通过 T881 初级绕组加到 IC881 (TNY254P) 的 (5) 脚,此脚是开关管 (场效应管) 的漏极。同时,此电压经 IC881 内部的 5.8V 稳压器,比较器,给开关管的栅极提供稳定的供电。由 D884 等组成稳压反馈回路。在 IC881 内部有一振荡器,输出时钟信号及占空比脉冲,通过几个"门"电路及一个 RS 触发器控制开关管的导通频率。附 IC881 (TNY254P) 内部方框图及功能介绍。

TNY254P 内部框图

待机控制电路由 R854、D871、Q852、RL801 组成。微处理器 IC1101 (M37274) (10) 脚待机控制脚输出高电平时,Q852 导通,继电器 RL801 吸合,220V 通过 R801 加到 D801 桥式整流电路。反之,当(10) 脚输出低电平时,继电器断开,220V 交流电无法加到 D801,300V 直流没有输出,整机处于待机状态。

(二) 主电源电路

1、起动电路

300V 直流电压一路通过 R803、R804 后给 C808 充电,使 STR-F6656(4)脚电压上升,当达到阈值电压 16V 时,IC 内的控制电路开始起动,(4)脚的输入电流由 $100\,\mu$ A 突升到 30mA,电容来不及供电而使电压下降。此时开关变压器 1、2 绕组通过 D819 整流提供 17V-18V 的直流电压,使(4)脚电压不致于掉到停振阈值 11V 以下,维持 IC 继续动作。

2、稳压原理

当主电压升高时,通过稳压取样电路 IC808(SE139)后,光电偶合器 D807 内部发光二极管负极电压降低,发光强度增强。这样光敏三极管的内阻减小,电流增大。此电流经过 D813、R820 在 R819 上形成压降,IC801(1)脚电压迅速上升,内部比较器提前反相,开关管提前截止,导通时间缩短,输出电压下降,达到稳压的目的。当主电压下降时,则相反。

3、尖峰脉冲吸收电路

此部分电路由 Q805 组成。根据同名端,开关变压器 8、9 绕组产生的感应电动势与 5、7 绕组电压相位相反。当开关管由饱和状态转向截止时,Q805 迅速导通,C819 被短路,开关变压器的 5、7 绕组产生的尖峰脉冲迅速通过 C828、C820、C822 短路到地,避免了因脉冲幅度过大击穿开关管。同时,当开关管饱和导通时,Q805 截止,C813 被接入电路,由于 C813 容量小,串入后,整个吸收回路容量减小,降低了因吸收电容过大,对开关管饱和时的损耗,提高了电源的效率。

(三)保护电路

为防止因电路工作不正常机器仍然工作而造成其它损坏,本机专门设计了CPU保护电路。该部分电路主要由Q854等组成,其集电极接CPU的(9)脚,保护检测脚。当正常工作时,Q854截止,集电极为高电平,CPU不动作。当保护电路工作异常,Q854导通,集电极输出低电平,CPU的(9)脚检测后,(10)脚输出低电平,切断300V,整机处于待机状态。本机保护电路共有三路:

1、行过流保护电路

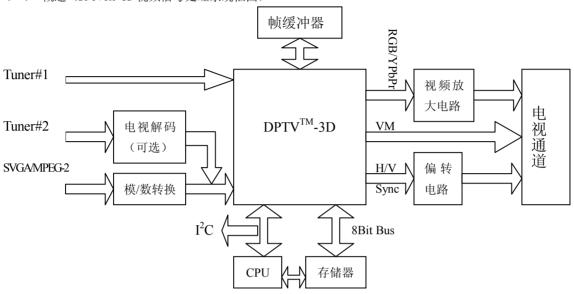
此部分由 Q849 等组成。正常工作时,Q849 截止,D869 截止,保护电路不工作。当行过流时,通过 R873 取样,Q849 基极电压降低而导通,140V 通过 R880、R884、R881 分压后加到 D869 正极,导通。高电平通过 R871、R872 后加到 Q854 基极,导通,集电极输出低电平,CPU 的(9)脚检测到后,待机脚输出低电平而自动关机,起到保护作用。

2、灯丝过流保护

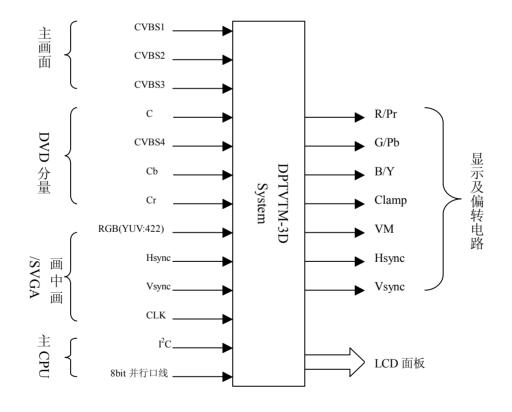
此部分电路由 IC9601 电压比较器组成。正常工作时,灯丝取样电流,经 R526 限流,D511 整流,C523 滤波后得到 20V 左右的电压,经 R527、R526、R9602 分压后送到 IC9601(3)脚,正常约为 6V。IC9601(2)脚为基准电压 6.5,(1)脚输出低电平。当灯丝过流时,比较信号输入升高,当(3)脚电压超过 6.5V 时,比较器反相,输出 10V 左右的高电平,加到 D870 正极,导通。高电平加到 Q854 基极,导通,CPU 保护关机。

3、场工作异常保护

此部分电路由 Q451 等组成。正常工作时,IC451 (LA7845) 的 (7) 脚泵电源输出经 R462 取样,D452 整流,C451 滤波后,得到 16V 左右的电压,经 R477、R478 后加到 Q451 基极而导通,集电极输出低电平,D454 截止。当场块工作异常,(7) 脚无泵电源输出,Q451 截止,12V 电压通过 R456 后加到 D454 正极而导通,这样 Q854 饱和导通,CPU 保护关机。


三、CPU 控制部份

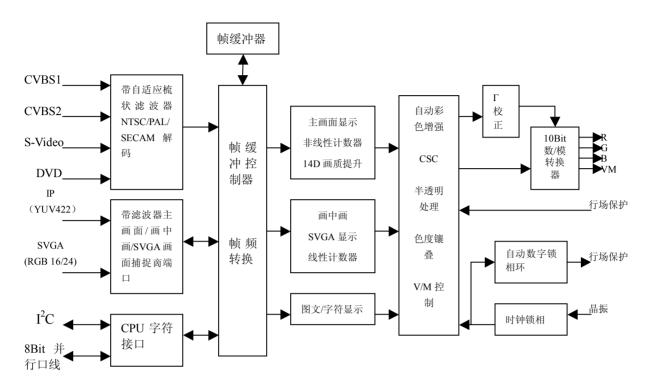
本机芯 CPU 的型号为 M37281, 共有 52 个引脚, 其工作过程如下:接通电源后,副电源板通过 IC1201 给 CPU 提供 5V 供电,同时通过 Q1102、Q1103 对 CPU 进行复位,复位工作完成后,CPU 的 10 脚输出一高电平控制副电源板继


电器吸合,使主电源工作正常,同时 CPU 通过 I° C 总线对各相关 IC 进行检测: 首先检测的是存储器 24C16、会聚芯片 CM0021AF 及数字板,检测无误后,CPU 会给数字板一复位信号,让数字板开始工作,输出行、场同步信号。当 CPU 检测正常的驱动芯片 TDA9332 接到同步信号后,经振荡、锁相输出行、场激励信号,驱动扫描电路、整机开始工作。CPU 则时刻对各 IC 进行检测与控制。

四、数字处理电路

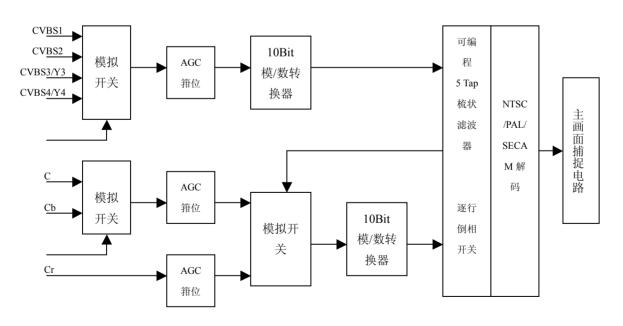
(一) 概述 (DPTVTM-3D 视频信号处理系统框图)

(二) DPTVTM-3D 系统接口框图

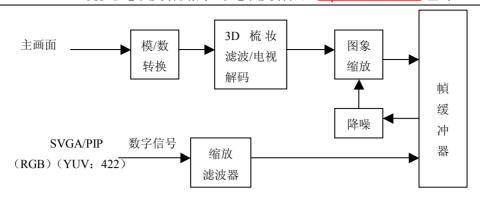


(三) 功能描述

- 1、倍频及变频处理
- 2、图文/字符显示
- 3、14D 画质提升


4、带可编程序 D 梳状滤波器解码

(四) DPTVTM-3D 功能框图


1、功能描述

(1)、NTSC/PAL/SECAM 电视解码

NTSC/PAL/SECAM 电视解码能够将模拟电视信号转换成数字形式。外部输入信号通过模拟开关,选择信号源经 AGL 箝位放大后,转换成数字信号,经可编程数字梳状滤波将 Y/C 分离出来。彩色解码电路利用数字梳状滤波分离出 U、V 信号。

(2)、图像捕捉接口(Capture port)

图像捕捉电路由主画面及画中画两个相连的部分组成,主画面接收模式拟信号由前置放大,模/数转换后变成数字信号,经3D梳状滤波,解码后取出Y、U、V信号,送到图像缩放,进行归一化处理。画中画支路接收数字信号经缩放、滤波、归一化处理。因此,DPTV-3D可支持1080i、480i、480p、720及SVGA格式信号。

五、行场扫描处理电路

全电视信号送入数字板,经数字处理,分离出行场同步信号。经 IC2707 (74HC157) 与 VGA 行场同步信号进行 切换,输出信号一路送到微处理器用于字符定位,一路送到 IC1315 (TDA9332),另外还有一路行同步信号送到会聚 芯片 IC7107 (CM0021)。行同步信号由 TDA9332 (24) 脚输入,经第一相位环、第二相位环后由(8) 脚输出行激励信号。此行激励脉冲加到行推动管 Q501 栅极,经放大、整形,再经行推动变压器 T501 耦合后送到行输出管 Q551。

IC1315 (TDA9332) 的 (1)、(2) 脚正反相场锯齿波经 C401、C402、R473、C460、C2、R476、R454 加到场块 IC451 (LA7845) 的 (4)、(5) 脚, 经内部放大, 由 (2) 脚输出场锯齿波电流送入场偏转线圈。

六、会聚电路

整个会聚校正电路由数字会聚处理芯片 CM0021AF、6 通道 16 位 D/A 转换器 CD0031AM、I/O 扩展口 (CXA1875AM)、E2PROM 存储器 (24C64)、低通滤波器 (084)、3. 3V 四端稳压器 IC7180 及功率放大器 STR392-110 (IC7001、IC7002)及外围元件组成。

IC7107(CM0021AF)是整个会聚电路核心部件,内置粗调、细调会聚所需的各种波型发生器、动态聚焦及锯齿波发生 D/A 转换器、数字信号处理器、 I^2C 总线接口、水平、垂直控制电路、PWM 波形及时钟控制电路。

(一) E²PROM 接口

通过使用 SCLM (7 脚)、SDAM (6 脚)、XWC (5 脚)端口可以外接一个 I²C 接口的串行 E2PROM 存储器。SCLM、SDAM 及 XWC 分别连接外部存储器的 SCL 时钟、SDA 数据及 WP 写保护脚。XACKM (9 脚)、XBUSY (10 脚)端口指示 E2PROM 接口的通信状态。设置端口 XSTOP (8 脚)为低电平可使 E2PROM 接口通信停止,设置 X12RES 端口 (11 脚)为低电平,可使 E2PROM 接口发送 "RESET"命令给外部 E2PROM。

(二) 微处理器接口

通过使用 SCLS(19 脚)、SDAS(18 脚)、端口可以在外部连结一个微处理器,端口 E0(35 脚)、端口 E1(38 脚)、端口 E²(49 脚)用来设置 N1 与外部微处理器通过 I2C 从机接口通信时的器件地址。

(三) 控制信号

XRESET(14 脚)为内部复位端口,当为低电平时,可使内产模式控制寄存器恢复初始的值。XRAMCLR(13 脚)为内部会聚校正数据 RAM 清除端口,当为低电平时,内部 RAM 数据将清为 0。XMUTE(12 脚)为中点输出控制脚,当为低电平时,会聚校正及动态聚焦波形输出的电压约为 0V。

(四)同步信号

端口 HBLKIN (37 脚)、VBLKIN (30 脚)为水平垂直消隐脉冲输入端,内部 PLL 电路使用这两个基准脉冲信号产生内部操作所需的系统时钟信号。

(五) PLL 锁相环

内部由压控振荡器(VCO)可编程分频器和相位比较器组成,PDOUT (48 脚)为相位比较误差输出端,外接环路低通滤波器,把相位误差脉冲信号平滑后变为直流电压,从振荡频率控制输入端 VCOIN (47 脚)输入,控制压控振荡器的振荡频率。

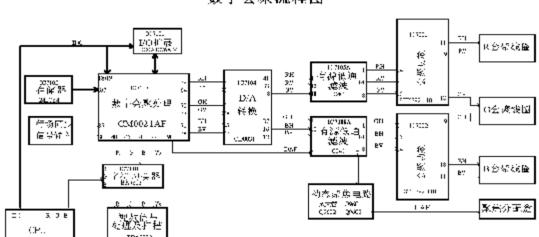
(六)会聚较正输出

64、67、68、69、70、71 脚为会聚校正数据输出端口,外接对应 D/A 转换器 CD0031AM 端口 1、2、3、46、47、48 脚。

(七) 动态聚焦校正输出

A0UT2、90 脚为动态聚焦校正输出。

(八)测试图发生器


ROUT (39 脚)、GOUT (44 脚)、BOUT (51 脚)、YMOUT (55 脚) 为内部测试信号输出端口,送到 BA7603,在 BA7603 内部与送来的字符信号相加后从 BA7603 的 3、5、6 脚输出字符信号至扫描板 9332。

CXA1875: 主要用于会聚调整时的功能控制,用于当前制式的检测及会聚调整状态进入的控制功能。

CD0031: 主要是把 CM0021 送过来的串行会聚校正数据数字信号转变成会聚校正所需的模拟信号。

IC7105、IC7106: 主要是构成缓冲放大器及低通滤波器,对 CM0021 内部 DAC1 输出的动态聚焦模拟阶梯信号及 CD0031 会聚校正模拟阶梯信号进行缓冲及滤波输出平滑的校正模拟信号。

(九) 数字会聚工作原理:

数字会聚流程图

在正常工作情况下,当接上电源后,CM0021 进行内部复位,然后 CX1875 根据电视当前的工作状态对 CM0021 进行初始化设置: 主要包括 CM0021 内部控制寄存器的设定、外接 DA 接口特性设定、外接 E2PROM 存储器特性设定,设置完成后,进入正常工作状态,由 CM0021 从 24C64 指定地段读入会聚校正数据到内部 RAM中,CM0021 内部 DSP 对这些数据处理后,从 D/A 转换器接口输出串行格式的校正数据,由外接的 D/A 转换器进行 D/A 转换(CD0031)输出 6 通道模拟信号。该信号经低通滤波器滤波后输出平滑的会聚校正模拟信号,然后进入功率放大器放大。

七、伴音处理电路

680HD 机芯采用 5.1 声道伴音输出,即 FL(左前置)、FR(右前置)、SL(左环绕)、SR(右环绕)、CT(中置)、SUB(重低音)。其电路主要由 PT2323、PT2322 及 HM600-020 组成,其中,PT2323 作用是进行通道选择及虚拟 5.1 声道的转换,PT2322 是一个音效处理集成电路块,HM600-020 则是一个大功率放大厚膜。当输入的音频信号是左右声道时(如 TV、AV 的立体声),PT2323 会将其转换成虚拟 5.1 声道输出。当输入信号是标准 5.1 声道时,PT2323 将不作处理,信号直通至 PT2322 作音效处理,之后进入大功率放大厚膜 HM600-020,驱动扬声器输出。

八、集成电路介绍

(一)、TDA9332

1、简介

TDA933XH 系列是为高档彩电设计的显示处理器,飞利浦公司于 1998 年推向市场,其主要性能表征如下:

- 能适用于单扫描(50/60HZ), 也适用于双扫描(100/120HZ);
- RGB 控制处理器有一个 YUV 输入端,一个线性 RGB 输入端并与快速消隐信号一起传送,以适应 SCART 或 VGA 适配器所传送信号的需要:
- 具有一个带有快速消隐的单独的 OSD/测试输入端;
- 具有与制式无关的亮度信号的黑电平延伸功能:
- 内有色差信号可切换的矩阵;
- 具有"连续显像管阴极校正"的 RGB 控制电路以及白点调整功能;
- 为了偏转处理,内设有时钟产生电路,用 12HZ 晶阵来实施同步,这类可编程偏转处理器所产生驱动信号 用于行、场偏转和东一西校正,该电路设有各种性能适用于 16:9 宽频显像管;
- 具有两个控制环的行同步电路,还有一个无需调整的行振荡器:
- 具有行和场几何失真处理的能力;
- 具有行和场变焦能力以适应 16: 9 屏幕需要,还具有垂直卷摺功能;
- 行驱动脉冲能实施软件启动和软件停止:
- 各种功能均可用 I²C 总线控制:
- 具有很低的功耗。

2、TDA9332的内部功能运行

(1)、RGB 控制电路

A. 输入信号

TDA9332 的 RGB 控制电路有三种输入信号,即

- YUV 输入信号:它直接由增强模块或输入处理器提供的信号,也就是主要传输的信号,利用 GAI 位,使亮度输入信号灵敏度可在 0.45V_{PP}和 1.0V_{BL-PH}间切换,U 与 V 信号正常输入电压为 1.33V_{PP}和 1.05V_{PP},对比度、色饱和度和亮度均可控制这些输入电压。
- 第一组 RGB 输入信号:主要用于外部 SCART 插座进入的 1f_H信号和 VGA 接口进入的 2f_H信号,其振幅典型值为 0.7V_{PP},这类输入信号也受对比度、色饱和度和亮度的控制,为了避免当不同步的 RGB 信号提供给输入端而引起的钳位干扰时,输入钳位能方便地切换到直流钳位,当然需采用 DCT 位来实施。
- 第二组 RGB 输入信号:通常指屏显 OSD 和图文电视送入的信号,要求这些信号的幅度为 0.7 V_{PP}。藉助于混合功能或快速消隐来实施内部信号和 OSD 信号间的切换。这类信号仅受亮度控制,事实上从内部组成框图中也已表明各类信号受控的情况。

各种信号源之间的切换,既可通过 $\mathbb{I}^{\mathbb{C}}$ 总线也可通过快速内插开关来实现,而快速内插开关也要经过总线来执行。

输入电路还包括用于色差信号的可切换矩阵电路,适用于 PAL/NTSC 和 SECAM 制的彩色重演系统,对于 NTSC 制要选择两种不同的矩阵。

B. 输出放大器

在正常输入信号和控制设定的情况下,输出信号的振幅(从黑电平到白电平)约有2V。对于RGB信道,藉助于三个独立的增益设定来实施显像管所谓的"白点设定"。目前发展一种"连续阴极校正"电路来取得显像管精确偏置电压,利用二点黑电平稳定电路来实现这一功能。对于每一个电子枪插入二个试验电平使其与备有二个不同基准电流的合成阴极电流相比较,从而限制了显像管参数不一致如电压变动所带来的负面影响。

所谓2点稳定概念是基于这一道理,即把阴极电流间之比直接与驱动电压的比联系起来。

$$\frac{I_{K1}}{I_{K2}} = \left(\frac{Vdri.1}{Vdri.2}\right)^{\gamma}$$

反馈环使得阴流 I_{st}和 I_{sc}之比等于基准电流之比,后者在内部是确定值,为此利用二个会聚环来改变黑电平和RGB 输出信号的幅度以实现上述目标。该系统运作按以下路径进行,即驱动信号的黑电平控制电子枪的截止点,从而能得到一个极好的灰度跟踪,黑电平调节的精度恰巧取决于内部电流比,而在集成电路中这方面可做到相当精确。2 点测量的另一个优点是使 I_{st}和 I_{sc}的识别出内部基准电流,利用 RGB 控制级的增益适配性来取得这一调节,这样的控制稳定了 RGB 输出级和阴极特性合成的全信道的增益。2 点稳定性的一个重要性质是利用反馈环调节了 RGB 通路的偏移和增益。依靠测试脉冲间的关系,设置基准电流以及三个信道的相对增益。对于阴极而言,其最大驱动电压也是固定的,跟随而来的显像管的驱动电平不能依靠 RGB 输出级所适配的增益来调节。然而不同显像管可能需要不同的驱动电平,利用 I²C 总线设定来调节典型"阴极驱动电平"。RGB 输出级的典型增益取决于所选择的阴极驱动电平,考虑到 RGB 输出驱动范围,其值是能确定出来的。在两个连续场中能实现 2 点稳定店路"高"和"低"电流的测量,在每一场中还要测量泄漏电流,其最大值应限制在 100 μ A。当电视机直接切换到暗电流稳定电路工作和 RGB 无输出时,消隐也很快被关闭,导致环路处于稳定状态,这样保证切换时间降至最小,而恰巧也与显像管的预热时间有关。暗电流稳定系统用来检查 3 个信道的输出电平,并指示芯片的最低 RGB 输出的黑电平是否在某一窗位(WBC 位)或者在该窗位上下位(HBC 位),这种指示值可通过 I²C 总线读出,并在电视机生产过程中自动调整 V_{sc}电压。当暗电流环中产生一次过失时,也就开路等原因,则设定 BCF 状态位,使显像管信息被消隐以免伤害屏幕。

控制电路还包含一个束电流限制电路和一个白峰值限制电路,用 I²C 总线可调节白峰值电平。为了防止白峰值限制电路在视频限制信号的高频端产生反作用,在峰值检波器前插入一个低通滤波器。低通滤波器的电容使外接的,其值由所需时间常数来设定。电路还含有一个软削波器用以防止输出信号变高时的高频峰值,利用 I²C 总线以步进形式可调节白峰值限制电平和软削波电平间的差异。

场消隐与输入信号(50/100Hz 或 60/120Hz)的场频应相适应,当场输出级的逆程时间大于 60HZ 消隐时间时,应增加时间值使其达到 50HZ 消隐时间,这样运作由 LBM 位来设定。当无视频信号时可插入蓝屏,该功能由 EBB 位来执行。

(2)、同步和偏转处理

A. 行同步和驱动电路

从内部压控振荡器 VCO 可取得行驱动信号, VCO 的运行频率为 13.75MHZ, 它是 15625HZ 行品德 880 次倍频。该振荡器的频率稳定性取决于外界陶瓷晶体谐振器 (12MHZ) 用作基准来完成的。当然也可从 TDA9332 外部提供基准信号, 在此情况下, 当然不必外接晶体。利用 PLL 电路使内部 VCO 同步于输入的行 H。脉冲, 该脉冲来自输入处理器或图像增强模块, 用切换脚来实现行驱动信号 (1f_H或 2f_H)的频率选择。把该脚接地或空位。为了安全起见, 1f_H或 2f_H 间切换尽可能在芯片待机状态下进行。

对于 TDA9331H 和 TDA9332H 也会设定"多同步"模的行 PLL。在此条件下电路检测出进入同步脉冲的频率,并对应调节 VCO 的中心频率。该模式的频率范围在输出端是(30-50)KHZ。

利用第二个控制环来产生行驱动信号,并使其与具备有逆程脉冲的内部 VCO 来的基准信号的相位进行对比,而环的时间常数是内定的。TDA933XH 有一个动态行相移校正输入,用以补偿电子束电流改变引起的相位偏移。此外通过第二环来实现行偏移设置,并由 I^2 C 总线来实施调节。在三个连续行周期内,若无行逆程脉冲被检测到,则必须设定 NHF 状态位(即输出状态字节 D1–D3)。

经过所谓的软启动/软停止程序,接通行驱动信号,该功能藉助于行驱动脉冲宽度改变来实现。对于无泄放电阻的 EHT 振荡器, TDA9332H 用 FBC 来设定"固定电子束电流模式",在此情况下,显像管电流约有 1mA 的泄放电流,用暗电流反馈环来控制泄放电流的大小,若要加大泄放电流,不妨外加分路电路。当选择固定电子束电流时,有可

能在断开其间出现黑屏,这种模式用 0S0 位来实现。

本芯片还有一个附加功能,即低功率启动功能,当电源电压 5V 加到启动脚 22 时,该模式开始工作,并耗电约 3mA(典型值),在此条件下,行驱动信号的正常的 T_{GF} (休止期)和 T_{GK} (脉冲期),很快从 0 升到 30%正常值,其工作行频约为 50KHZ($2f_H$)或 25KHZ($1f_H$),而输出信号保持不变,甚至主电源接通并接收到 1^2 C 总线数据后,方使行驱动频率按软件启动程序逐渐改变到正常频率和占空比。当待机位(STB0、STB1)改变时,本芯片仅能接通并切换到待机状态。若仅有一个位改变极性则电路不发生反应。TDA9332H 有一个通用总线来控制 DAC 输出,其分辨率为 6 位,输出电压变动范围为 $0.2V^2$ 4V。在 TDA9331H 中其输出端直流电平正比于行频(仅用于 VGA 模),该电压能用以控制行偏转级电源电压,以保证在较高行频时图像宽度保持不变。

B. 场偏转和几何校正控制

藉助于场分频器来产生驱动信号,提供给场和东西校正偏转电路,而时钟信号由行振荡器提供。而输入处理器和图像增强模块提供的 V₀ 脉冲使其与分频器同步。而场的斜行波发生器需要外接电阻和电容,必须注意这些元件允许的容差必须很小。在正常模式中,场偏转必须运行于恒定斜率,并使其振幅与输入信号的频率能适应(50/60Hz 或 100/120Hz)。

当 TDA933XH 切换到 VGA 模式时,场扫描幅度应是稳定的,并于输入场频无关。在该模式下,东西校正(E-W)驱动振幅正比于行频,所以屏幕上校正是不受影响的。

利用差分输出电流来实现场驱动,输出采用直流耦合加到场输出级(如 TA8354),通过 I^2C 总线来调整场的几何 参量,以下列出可控参量的项目。

- 场幅、S型校正;
- 场斜率:
- 场位移: 仅用于补偿输出级或显像管的偏差;
- 场变焦:即场放大:
- 场卷摺: 当场扫描扩展是在垂直方向图像的偏移;
- 场等待:为场扫描开始而设置一个可调延时。

在下述条件下, 场等待是有效的。

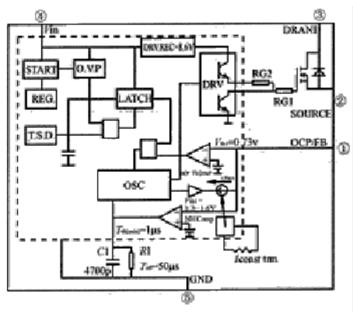
- 1、 在 1f_"TV 模中,场扫描起始是固定的,并且与场等待一起不能调节;
- 2、在 2f_{*}TV 模中,场扫描起始与总线的垂直扫描基准 VSR 位的数值有关,若 VSR=0,场扫描起始值对应于输入 V_o脉冲的下沿,若 VSR=1,则对应于输入 V_o脉冲的上沿,在上述两种场合下,场扫描起始值与场等待设定一起均可调整。
- 3、多同步模:即 TDA9331H 和 TDA9332H 工作在 1f₁模和 2f₁模时,场扫描的起始值对应于输入 V₀脉冲的上升 边,并与场等待设定一起均可调整。

有关场等待的最小值是8行周期,若设定低于8行周期,则它只保留8行周期。

E-W 驱动电路有一个单终端输出,下述东西(E-W)几何参量是可以调整;

- 由于变焦功能,行宽有一定增长区域可调整;
- 东西抛物波与其宽度可调整;
- 东西四角抛物波校正;
- 东西梯形的校正

本芯片有一个 EHT 补偿输入信号,用以控制场输出和 E-W 输出信号,通过 I^2C 总线能调节两种功能的相对控制效应。其中场校正灵敏度是固定的,而 E-W 校正是可变的。


3、应用电路和主要技术参数

(1) TDA9332H 主要技术参量

符号	参量	最小值	典型值	最大值	单位
		电源			
V_{P}	电源电压	_	8.0	_	V
I_{P}	电源电流(17 脚+39 脚)	_	50	_	mA
		输入电压			
$V_{\scriptscriptstyle 1LUM1}$	亮度信号输入 (黑电平到白电平值)	_	1. 0/0. 315	_	V
$V_{\scriptscriptstyle 1UV}$	U/V 输入信号(峰峰值)	_	1. 33/1. 05	_	V
V_{1RGB}	RGB 输入信号(黑电平到白电平值)	_	0.7	_	V
$V_{\scriptscriptstyle 1HSYNC}$	行同步输入(压)	_	TTL	_	V
$V_{\scriptscriptstyle 1VSYNC}$	场同步输入 (V₀)	_	TTL	_	V
V1I ² C	V1I ² C I ² C 总线输入(SDA、SCL)		CMOSSV	_	V
		输出信号			
Vorg RGB 输出信号幅度(黑电平到白电平值)		_	2.0	_	V
$I_{ ext{OHOR}}$	T _{OHOR} 行输出电流		_	10	mA
$I_{ ext{overt}}$	场输出电流 (峰峰值)	_	1	_	mA
I_{OEW}	EW驱动输出电流	_	_	1. 2	mA

(二)、STR-F6656 开关电源

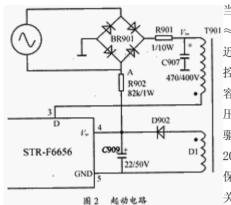
1、引言

■ STR-F6656 系列方框图

混合型电源 IC STR-F6656 系列是日本 Sanken 电气公司的近年产品。它内含 MOSFET 及控制 IC 部分,是专门为反激型变换器设计 的,特适用于彩色电视机开关电源。

该混合 IC 可工作于准谐振方式以及脉冲 占空比控制 (PRC——PulseRatioControl) 方式。它具有常规第二代 SMPSIC 的特点,即 采用次级输出采样及光耦反馈稳压、准谐振、 高效率、宽输入范围、良好的输入电压调整率 和负载输出特性,还有过流、过压及热保护等。 相对于同类型的其它厂家 IC,它多了一个热保 护以及开关电噪声较小,可简化或甚至取消浪 涌吸收电路。

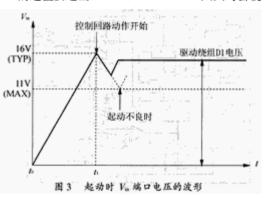
本文介绍该系列 IC 的工作原理,在此基础上描述怎样利用它设计制造一台大屏幕彩色电视机开关电源。文中给出样机电源电路,变压器设计以及实验结果。实验表明,该电源完全

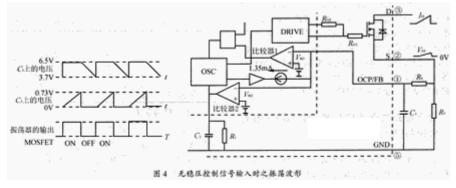

符合电视机电气要求,它外围元件少,设计容易,稳定度高。在高温、低温、EMI、短路和开路等环境和安全实验中 均符合国家标准,是一个不可多得的简单和高效能的电视机实用开关电源。

2、混合型开关电源控制器 STR-F6656 系列原理和特性简介

图 1 给出了 STR-F6656 系列的原理方框图。这是一个有一个引出脚的塑料封装 IC, 其每脚功能简述见表 1。

管脚	符号	说明	功能
1	OCP/FB	Overcurrent/Feedback terminal	输出过流检测信号和稳压控制信号
2	S	Source terminal	MOSFET 源极
3	D	Drain terminal	MOSFET 漏极
4	VIN	Supply terminal	控制电路的电源输入端
5	GND	Ground terminal	地

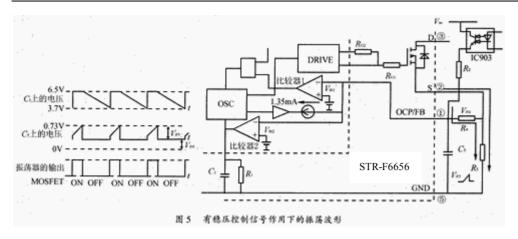

2.1 起动电路



当 AC 电源在 t0 加入时,由图 2 可知,在半个周期内,A 点对地峰值电压 VA 1900 ≈ Vd(整流电压),VA 经过 R803、R804 向 C808 充电,使 IC 脚④上电压 Vin 近似线性上升(见图 3)。当 Vin 上升到阈值电压 Vin(0N)=16V 时,IC 内的控制电路开始起动,Vin 端口上的输入电流 Iin 由 100 μ A 突升到 30mA,电容 C808 来不及供电而使 Vin 下降。如果此时由驱动绕组 D1 所提供的 DC 电压足够的话,Vin 将不致于掉到仃振阈值 11V 以下,则 IC 继续工作起动成功。驱动绕组 D1 的圈数须保证经整流后在 C808 上电压超过 11V,同时又要低于20.5V。因为 Vin 大于 20.5V则过压保护电路起作用,Vin 小于 10V 时则欠压保护电路起作用。一般 Vin 取 18V 是较合适的。

关于 R803、R804 及 C808 的选值要适当。R803、R804、C808 太大均会使 IC

起动时间 t1—t0 延长。但 C808 亦不能过小,否则在驱动绕组 电压到来之前它已不能维持 IC 动作,这样就不能顺利起动。一般对宽电源 $(90\sim270)$ VAC 电压 C808 取 $(47\sim100)$ μ F,R803、R804 取 30 k $\Omega^{\sim}47$ k Ω 是合适的,对窄电源 (200 VAC),R803+R804 可取 75 k \sim 150 k。在本例子中,当 R803+R804=78 k Ω ,C808=47 μ F,输入电压为 90 V 时,其开机起动时间为 1.3 μ s 左右。 2.2 内 部 振 荡 器 , 稳 压 原 理 和 过 流 保 护 (1) 内部振荡器 IC 内部振荡器是通过对 C1 的充放电而形成振荡脉冲的,放电时间常数 C1R1 $(\approx50$ μ s) 决定了 MOSFET 的关断时间。在 PRC 运用模式中,稳压是由固定 toff 而变化 ton 来达

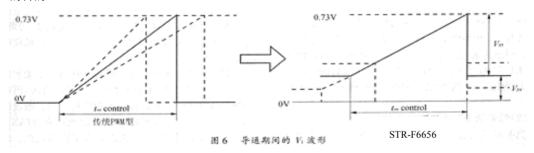


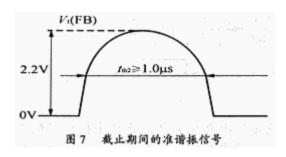
到的。图 4 示出了当没有稳压控制信号输入时,内部振荡器的工作波形。由图 5 波形可见,当 MOSFET 导通时,电容 C1 被充电到 6.5V。同时漏极电流 ID 逐步上升,在R5 上形成一锯齿形状电压VR5。VR5 通过 R4 后几乎无损失地加到 IC 的①脚

OCP/FB 端口。当①脚电压 V1 达到阈值 Vth1 \approx 0.73V 时,比较器 1 开始动作,它使振荡器输出反相,并通过驱动级将 MOSFET 关断。此后 C1 通过电阻 R1 放电,C1 两端电压按恒定的放电时间常数 C1R1 线性下降。当它降到 3.7V 左右时,振荡器输出再次反相,使 MOSFET 重新导通,C1 电压再次跳升到 6.5V。如此不断重复上述过程。

由上述可知,MOSFET 的导通持续时间 ton 是由 VR5 的上升斜率决定的,而 toff 在 PRC 模式中则由 C1R1 决定。

(2) 稳压原理




如图 5 所示,为了控制输出,光耦合器的误差信号输出电流在 R4 上形成电压降 VR4 串接在 VR5 上,从而使输入到① 脚的电压 V1 波形部分受到 VR4 的控制,使比较器 1 提前或拖后反相,以改变 MOSFET 的 ton 从而改变次级输出电压,达到稳压的目的。这属于电流控制方式。一般说来,在电流控制方式中,轻载时 VR4 会升高,有可能使 MOSFET 导通时的浪涌电流所引起的噪声对比较器 1 带来误触发。为了解决这个问题,在 MOSFET 关断期间插入一个有源低通滤波器,它是由 C5 和一个 1.35mA 恒流源组成,旁接于①脚和地之间。在 MOSFET 导通之前,该滤波器分流了从光耦输出的约一半电流量,因而使 VR4 直流偏置量有效降低,防止了导通浪涌电流的叠加而引起的误触发,此外 C5 的存在也加大了对噪声的吸收旁路作用。

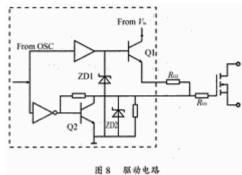
应该指出的是,现在 ton 的控制是通过改变 VR4 的直流电压达到(见图 6),这与过去传统方法不同,过去的 STR-S6700 和 STR-M6800 系列是靠改变充电电压的斜率而达到改变 ton 的。

(3) 过流保护

这是一个脉冲连着脉冲的过流检测电路。由图 5 中的波形可见,比较器 1 起着过流保护作用。只要正比于 Id 的电压 V1 峰值超过限值 0.73V 时,就会强迫振荡器输出反相,使 MOSFET 关断,ton 变小,达到了限制输出电流和输出功率的目的。

2.3 准谐振运用

上面讨论了纯光耦反馈电路的 PRC 工作情况,实际的应用电路应包括从变压器驱动绕组 D1 来的反馈支路(它包括 D821, R836, C829, D820 等元器件),由于这个支路的存在,使得 V1 在 MOSFET 关断期间含有与 VDS 成比例的电压成份,它叫准谐振信号(见图 7)。根据准谐振信号的电平大小可决定该电源是工作在 PRC 方式还是准谐振方式。在 MOSFET 关断期间如果准谐振信号 V1 处在 0.73V 与 1.45V 之间,则比较器 1 起作用使电源进入 PRC 方式;如果准谐振信号 V1 超过 1.45V (V1 最大值为 6.0V),则比较器 2 起作用使 toff 降为 1.5 μ s(min) 左右,但现时功率管的关断时间不取决于此值,而是比它大得多。事实上只要 V1 保持大于 0.73V,则 MOSFET 仍然维持关断,什么时候开始


转导通,则由准谐振方式决定。准谐振方式就是使 MOSFET 在 VDS 的谐振周期的半周处导通,这样可保证较低的开关电应力和减少开关损耗,为达此目的,需要满足以下二条件:

- (1) 在漏极和地之间要有一个合适的电容 C815、C813 存在,由它与初级电感构成 LC 谐振回路,以便形成漏一源极之间电压 VDS 的谐振波形;
- (2) 栅极驱动中要有合适的延迟以保证当准谐振信号 V1 下降到 0.73V 以下,MOSFET 开始导通时恰好对应于 VDS 波形的最低处。
- 2.4 驱动电路,锁定触发器,热保护和过压保护

(1) 驱动电路

驱动电路如图 8 所示。

这是恒压驱动电路,它利用稳压二极管 ZD1 (8.6V)来保护恒定的驱动信号幅度。当驱动信号为正脉冲时,Q1 导通,

通过电阻 RG1+RG2 对 MOSFET 激励使之成为软开关。当输入信号为零电平时,Q1 截止,Q2 导通,MOSFET 栅极电荷将经过一个较小的电阻 RG1 而迅速放电。稳压二极管 ZD1 的作用是保护 MOSFET 在截止时不致于被上冲的 VDS (500V~600V) 通过 D—G 极间电容耦合到栅极而将管子损坏。

(2) 锁定触发器 Latch

当电路发生过压或过热时,芯片内有关电路会将锁定触发器置 ON, 使④脚上电压 Vin 在 10V~16V 之间来回摆动。IC 间歇性地工作,阻止了电流和电压不正常的升高,直到 Vin 低于 6.5V 时,电路完全不

起振。此时若要电源再起动,需要关机后再开机才行。

(3) 热保护电路 当混合型 IC 的外壳温度超过 140℃时,控制 IC 中的热保护电路就会起动锁定触发器置 0N,由于 MOSFET 与控制 IC 装在同一块基板上。所以热保护同样包括 MOSFET。

(4) 过压保护电路

当 Vin 超过 22. 0V 时,过压保护电路能起动触发锁定器。使 Vin 在 $10V\sim16V$ 之间来回摆动最后会降到 6.5V 以下,电源完全停止工作,此时要关机后再开机才能重新起动。

过压保护电路同时可以防止次级输出电压 V01 过高。例如当控制电路开路或其它原因引起 V01 大大升高时,通过变压器耦合,驱动绕组的感应电压相应也会升高,从而使 Vin 升高。当 Vin 超过 22V 时过压保护同样起作用。限制了 V01 的再升高,此时的 V01 为 V01 (0VP)=[Vo1(正常值) / Vin(正常值] × 22.5

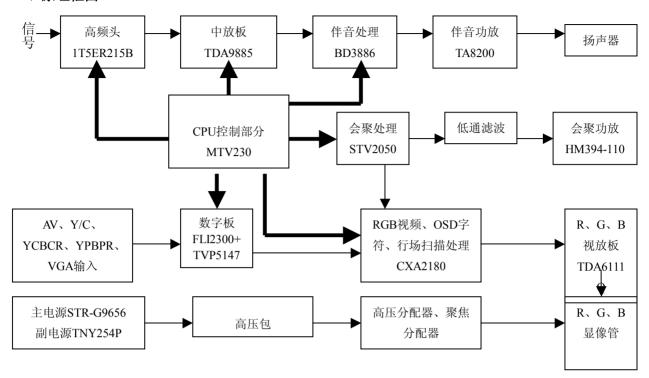
例如设 V01(正常值)=130V, Vin(正常值)=18V, 利用上式即可算出 V01(0VP)=162.5V, 这表示当故障发生时由于过压保护起作用, V01最高不会超过此值。

实验表明,该电源开关噪音干扰较小,无须加入特别的抗干扰措施,便轻易地通过 EMC 测试。但在稳态的 STANDBY 状态,其输入功耗稍大些,通过调整 ND2,以及加入光耦 IC809 使电源在 STANDBY 时工作在间歇脉冲状态,从而减少了输入功耗。最后得出如下实验结果:输入电压 VMAINS: (90~264) V

输出电压 VO1: 139V

输入电压调整率: 当 VMAINS=90V~264V 时, V01=139V±0.2V

负载变化调整率: 当 IO1=0.3A~0.6A 时, VO1=139V±0.3V


STANDBY 输入功耗 (230V 时): 12W

AC/DC 转换效率 η=85%

开关频率范围: 30kHz~110kHz

第三章 88HD/66HD/99HD 机芯原理

一、原理框图

二、开关稳压电源电路描述

该机芯电源采用的日本三肯公司的 STR-G9656 厚膜集成电路,该电路属于变压器耦合并联型开关电源,具有功耗小、效率高、稳压范围宽等特点。同时,此厚膜块外围电路少,电路设计相对来说比较简单。STR9656 共有五个端子:

1 脚是内部 MOS 管漏极 D, 300V 电源输入端; 2 脚是内部 MOS 管的源极 S; 3 脚是 GND, 电源地端子; 4 脚是 VIN 端子, 即 MOS 管启动端子; 5 脚是 0CP/FB 端子,即过流/反馈端子。

具体工作原理: 开机后副电源工作,给 CPU 供电,CPU 复位后输出待机控制信号,使继电器吸合,交流电源经二极管 DB601 整流,R611、R612 降压,对 C611 充电。当 4 脚 (VIN 端子) 达到其启动电压后,启动回路开始工作,STR9656 内部振荡器开始振荡,振荡后的信号经驱动电路驱动,送到场效应管的控制栅极,控制内部 MOS 管导通。另外,交流电经桥堆 BR601 整流,再经 C609 滤波得到 300V 左右的直流电压,经开关变压器初级送入 STR9656 的 1 脚 MOS 漏极,此时 MOS 管开始工作,整个电源开始工作。电路工作后,由于 MOS 管的开关作用,产生变化的电场,变化的电场产生变化的磁场,经开关变压器的作用,在次级感应出电压,经过整流滤波,得到各组所需的工作电压。部分外围电路的作用:

- 1) STR9656 4 脚外围: a) D615(24V 稳压管)起保护作用。b) D613 用于给 STR9656 正常工作时提供启动电压,同时起过压保护的作用。
- 2) STR9656 5 脚外围: a) R621、D612、R616、D614、R617, R618 起同步和过流保护的作用。b) 光耦 IC604、R621, R634、R622、IC602(SE140) 组成取样反馈回路,用于控制 STR9656 的导通时间,起稳定输出电压作用。

三、CPU 控制部份描述

88HD 机芯 CPU 为一单独的小板,和数字板并排插在主板上。CPU 相当于指挥部,接收外界指令,指挥各个模块的工作。88HD 机芯 CPU 采用的是 MTV230 芯片,为 42 脚 SDIP 封装。工作过程:电源启动后,副电源给 CPU 提供 3. 3V 供电,同时另一路经 Q1、Q2 组成的复位电路给 CPU 复位,复位完成后,CPU 开始初始化执行程序,同时待机控制脚输出高电平,继电器吸合,主电源正常工作。CPU 此时会利用总线对 STV2050、数字板、CXA2180、BD3886 等进行检测,检测完成后,会给数字板和汇聚 IC STV2050 输出复位指令,同时开始控制各部分工作。

四、高放及中放部份描述

高频调谐器俗称高频头, 其作用主要是:

- a)、选择频道:接收来自信号线的电视信号,选择所要接受的某一频道的电视节目,抑制临近频道的干扰以及其他干扰。
- b)、放大信号:将选择的微弱电视信号进行放大,并对信号的强弱实现自动控制。
- c)、频率变换:对高频信号进行频率变换,混频得到固定频率的中频信号。

我国电视标准规定:图像中频为38MHZ,伴音中频为31.5MHZ,色度中频为33.57MHZ,信号带宽为8MHZ。(PAL/DK制)与高频头相关的故障主要表现为跑台、无台、漏台。对于此类故障,先检查5V供电是否正常,再查有无33VVT电压,最后替换高频头。

中频通道的作用:

- 1) 放大图像信号,抑制邻频道干扰。
- 2) 检波出彩色全电视信号,混频得到第二伴音中频信号。
- 3)产生自动增益控制电压 UAGC 和自动频率控制电压 UAFC。

88HD 机芯中频通道为一单独的中放小板,和高频头并排插在主板上。采用的是 PHILIPS 公司的 TDA9885 多制式图像中频、伴音中频处理集成电路,具有伴音准分离电路,减小了伴音对图像的干扰。此外,该小板上还设有同步分离电路(Q1、Q3),用于 CPU 对图像信号的识别,作用于搜台程序。

五、数字处理电路描述

此电路是88HD 机芯的核心电路,采用的是GENESIS公司的FLI2300数字处理芯片,上面有数字解码芯片TVP5147, AD 转换芯片MST9883, YPBPR和 VGA 切换开关PIV5V330及64MSDRAM存储器。FLI2300+TVP5147+MST9883的组合具有强大的数字处理功能。该机芯中对图像的解码、数字处理及对扫描频率的转换就是在数字板中完成的。

扫描频率的转换主要采用的方法是利用帧缓冲控制器,帧频转换器和寄存器,将低场频和低行频向高场频和高行频转换。通过对时间轴的压缩处理,完成信号 1 倍速暂存,根据需要的倍速读出来,这些软件可以通过总线控制。数字板对图像处理后输出 Y CB CR 信号和行同步信号 HSYNC、场同步信号 VSYNC 给主板上的其它 IC 进行处理。

六、三基色视频放大及行场扫描处理电路

图像信号经数字板解码及数字处理之后,将 CR、Y、CB 三路信号送入 CXA2180 (51、52、53 脚)进行相关处理。 CXA2180 的功能有: R、G、B 视频放大,字符 OSD 接口 (37、38、39 脚,36 脚为字符消隐输入)、会聚图形接口 (41、42、43 脚,40 脚为会聚图形消隐输入),行激励输出 (16 脚),正负场激励输出 (1、64 脚),VM 速度调制输出 (49 脚),总线控制 (59,60 脚),图像对比度/OSD 字符对比度控制,亮度控制,束流控制,消隐控制,副亮度控制等。

图像经 CXA2180 处理后,CPU 输出的字符信息也叠加到三基色信号当中,输出后的三基色信号(30、32、34 脚)进入视放电路进行放大处理,将幅度放大到适当幅度,以激励 CRT 三个阴极工作。由于本机的视频带宽较普通机器要高,为了减少信号中高频成分的损失,保证视频信号应有的清晰度,本机采用了 TDA6111Q 宽带视放处理 IC。CX2180 对亮度信号处理后,输出 VM 信号经 CN505 插座到 VM 板上的 VM 电路。经 Q502、Q503,Q504,Q505 的缓冲放大,送入 Q506,Q507 倒相放大,输入 VM 调制线圈,形成调制电流,调制电子束流,使图像边沿形成勾边效果。

CXA2180 上电后,会自由振荡输出行激励信号和场激励信号。当数字板输出的行场同步信号进入 CXA2180 后,经过锁相输出 38KHZ 行激励信号和相应频率的场频信号。行激励信号送入行推动电路,激励行管工作,FBT 高压包产生各组电压:阳极高压、视放电压、灯丝电压等,同时行扫描电路工作。与此同时,场激励信号送入场块 LA7845。LA7845 是一个互补对称型自举升压 OCL 功率输出电路,能够给偏转线圈提供线性良好,幅度足够的场扫描电流,供偏转工作。

另外, CXA2180 还提供一个 EW 信号给枕形校正电路 (Q306), 用于校正行扫描电流, 使屏幕上扫描出来的光栅趋于完好, 减少会聚电路的校正量, 降低会聚功放的功率。

七、会聚电路

CPU 工作后,给 IC801 STV2050 复位信号(13 脚),同时会聚总线 SCLF、SDAF 开始控制其工作。STV2050 输出会聚图形给 CXA2180,我们对图形的调整值通过总线传回 STV2050,该 IC 经过处理之后会输出相应的会聚行场调整

信号,经 IC802、IC803 TL084 比较放大后输出行的三路(RH、GH、BH)、场的三路(RV、GV、BV)会聚信号进入会聚功放 IC7001、IC7002 中放大处理,之后送入偏转线圈中实现对 R、G、B 行场扫描的矫正,使屏幕上显示的三基色图形重合在一起。会聚的调整值存在 IC804、IC806 两个存储器当中,每次开机后 STV2050 都会通过总线 SCLM(1脚),SDAM(2脚)从存储器里面读出相应的数据出来。

八、伴音处理电路

从中放板分离出来的第二伴音中频信号,送入 BD3886。而 AV 伴音则通过切换开关 IC401 TC4052(四选一电子 开关,用来切换几路 AV 信号的伴音,通过 CPU 输出的 AVSW1、AVSW2 控制信号控制),选通后的伴音信号也送入 BD3886 音频处理器进行处理。BD3886 具有自动增益控制、BBE 伴音处理、音色控制、音量平衡控制、环绕声处理等功能,这些功能均可通过总线控制。

经过 BD3886 处理的音频信号送入功放 TA8200 进行放大处理, 然后驱动扬声器发声。TA8200 本身带有静音功能, 88HD 机芯的静音功能正是由 CPU 输出静音信号, 控制此功放 IC。

第四章 CRT 背投电视整机调试

一、300S/480/580HD/680HD 系列调试方法

1、进入工厂模式的方法

按一次总线遥控器 "22C" 键, 进入总线初始界面菜单, 并将其设置如下:

IIC BUS ON
CHIP—ID 1116
NUM 1
D 00
WRITE
READ OK
FAC OK

注:按"P∨"/"P∧"键上下选择功能,按"V₁"改变功能数据。

2、退出工厂模式的方法

直接在"READ"项再读一次, 使 FAC 项的"OK"变为"×"即可。

二、300S/480/580HD/680HD 整机调试

- (一)、DY、EHT 调试
 - 1、 开机接收 TV 十字格信号;
 - 2、 电视设置为 PAL/100HZ 模式;
 - 3、粗调帘栅、聚焦和镜头聚焦; 将图像调至当前状态最佳效果。
 - 4、CY 初始设置;

将 CY 六片磁环手柄上带点的一边均调至负 75 度位置。

- 5、 DY 水平、垂直定位;
- 6、DY 中心磁环调试; 将图像的行场中心调准;
- 7、EHT 电压调试。

确认有信号;

工厂模式下按一次"颜色"键, 使图像为黑屏;

红表笔接 TPD14, 黑表笔接地, 调整 R553, 使之为 1.75V。

注:有图像标准菜单下此电压为 2V。

- (二)、白场老化
 - 1、 进出白场的方法

工厂模式下按一次"OSD语言"键进入白场模式;退出方法同上。

2、 老化时间 (1H)

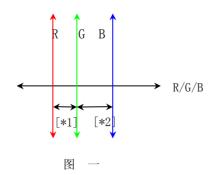
注:不能在会聚无补正状态下老化。

- (三)、CY调整
 - 1、进入光学

工厂模式下按一次"R/G/B"键;

2、CY角度设定

将 CY 二极磁环的上一片设为负 180 度位置;


将 CY 四极磁环的下一片设为负 90 度位置;

- 3、CY 二极磁环调试(会聚中心点调整)
- (1)、中心点的确认

旋转各枪的聚焦电位器旋钮,配合各枪的二极磁片调整,使各枪的中心点的中心位置在聚焦电

压变化时其中心位置不变;即聚焦电位器顺时针调至最大时的中心点与聚焦电位器逆时针调至最小时的中心点重合即可。

注: 因要将聚焦电位器逆时针旋转时的中心点作为标准, 所以只能在顺时针旋转时调试。

	43"	47" /51"
[*1]	10.0 ± 2.0 mm	$30.0 \pm 2.0 \text{mm}$
[*2]	17.5 ± 2.0 mm	40.0 ±2.0mm

附表 6-

补充: 软件中心调试

注:必须是在结构无法调好的情况下使用

24C16: 3; 02; 06; ※行

3; 02; 04; ※场

4、CY 四极磁环调试

旋转各枪的聚焦电位器旋钮,配合各枪的四极磁片调整,使各枪的中心点在聚焦电压变化时其中心点外形始终为圆形。

注: 因要将聚焦电位器逆时针旋转时的中心点作为标准,所以只能在顺时针旋转时调试。

5、 再次调试 DY 中心,确定图像中心调准。

(四)、镜头聚焦调整

(五)、帘栅调整

- 1、将电视设为 PAL 100H 模式
- 2、 进工厂, 按 "颜色"键设为黑屏:
- 3、将 RPg1、RPg2、RPr1、RPr2 四只电位器设置在中间位置; 即电位器上的字符正对前面。
- 4、 再将各枪的帘栅电位器逆时旋到底;
- 5、再将场信号 D12 拔掉;
- 6、慢慢调整各枪的帘栅电位器,使屏幕一条亮线刚刚出现为止,然后固定电位器:

(六)、白平衡调整

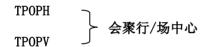
- 1、将 RPg1、RPg2、RPr1、RPr2 四只电位器设置在中间位置(方法同上);
- 2、接收窗口信号,按遥控器上的"数码工作站"键,调整亮度 MAX 和 MIN 项,使灰度等级信号的第 九格微微发亮,即将图像菜单设为出厂设置;
- 3、关闭 TV 总线;
- 4、调整 RPr2、RPg2、两只高亮电位器和 RPr1 和 RPg1 两只低亮电位器: 使图像为白色;

(七)、几何调整(分模式)

- 1. 进、出几何的方法: 工厂模式下按一次"几何"键,退出方法同上;
- 2. 调试规格说明:

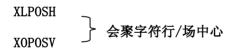
接收 PAL 单像卡,首先调准几何图像中心。按 "P\" / "P\" 键上/下选择功能,按 "V+" / "V -" 改变功能数据。

注:几何模式下行幅左右各为11格,场幅上下各为8格。

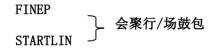

3. 调试菜单

H-SIZE 行幅 H-SHIFT 行中心 V-SIZE 场幅 V-SHIFT 场中心 TRAPE 梯形(行) SCOR 场S校正 **HBOW** 弓形(行) 平行四边形 (行) **HPARA** UPCORNER 上边角 LCORNER 下边角 枕形 (行) **EWPARA**

(八)、会聚基准中心调整(分模式)


- 1. 扫描模式: PAL/100HZ, 进入工厂模式。
- 2. 进、出、会聚基准中心及切换菜单的方法: 工厂模式下按一次"确认"键,其它同上;
- 3. 调试顺序: 以菜单出示顺序
- 4. 调试说明

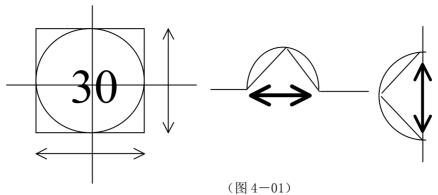
菜单一:


按一次"确认"键切换到下一个菜单。

菜单二:

按一次"确认"键切换到下一个菜单;

菜单三:


(如图 4-01 所示)

按一次"确认"键切换到下一个菜单;

菜单四:

再按一次"确认"键退出会聚基准中心调整。

(九)、会聚粗调(分模式)

1. 准备

接收 PAL 单像卡, 扫描模式: 100HZ, 进入工厂模式。

2. 进会聚的方法:

工厂模式下按一次"会聚"键

3. 会聚粗调各菜单的切换

按遥控器的 "R/G/B" 键,循环切换会聚字符调整模式;

按遥控器的"云"键,循环切换调整模式。

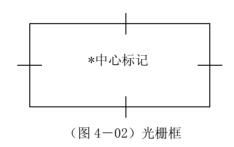
按遥控器的"颜色"键,循环切换调整模式。

4. 会聚粗调调试菜单

5. 调试规格

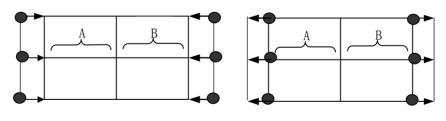
行幅左右格数各为约12,场幅上下格数各为约15.5;最后调其余几项,调完以后存储即可。

- 6. 绿单色会聚粗调
- (1) 工厂模式下,按一次"会聚"键进入会聚粗调状态。按"ご"键依次切换所要调整的选项。
- (2) 准备


按 "R/G/B" 键设为 "GREEN"调整模式;

按"颜色"键,设为绿单色;

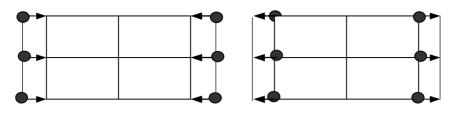
按"co"键,选择中心"STATIC-H"和"STATIC-V"调整模式。


- (3) 调试
- 1) G STATIC-H 行中心调整
- 2) G STATIC-V 场中心调整

调 G-STATIC 使绿的水平及垂直中心线与光栅框的中心标记一致(如图 4-02 所示)。然后按" **☞**" 键,选择线性"LINEAR"调整模式。

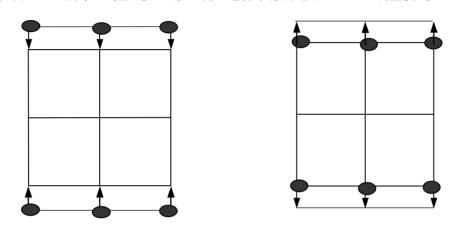
3) G LINEAR 线性调整

按"co"键选择线性"LINEAR"调整模式。调整 G 水平线形的位置, (如图 4-03 所示)。线性调整标准


(图 4-03) 线性图

是使 AB 格数尽量相等。但是调线性这一菜单时,调试的数值不能过大,否则将影响幅度;然后按" ぐ ン 健,选择幅度 "SIZE"调整模式。

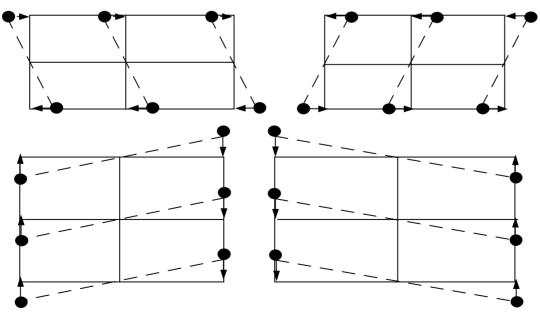
- 4) G SIZE-H 行幅调整
- 5) G SIZE-V 场幅调整


按" \circlearrowleft "键,选择幅度"SIZE—H"和"SIZE—V"调整模式,按频道" $\mathsf{P} \land / \mathsf{P} \lor$ "键调整上下边缘线与光栅框的边缘一致,选择"SIZE—H"按音量"+/-"键调整左右边缘线与光栅框的边缘一致。其规格行幅左右大约 11.5 格(如图 4-04 所示)。但是调行幅这一菜单时,调试的数值不能过大,

否则将影响线性;

(图 4-04) H-尺寸图

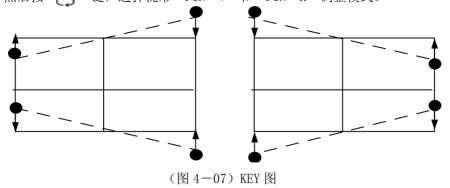
若上下边缘线不能与光栅框的边缘均等一致,调整上和下边缘线与光栅框的边缘一致。场幅上下大约 15.5 格(如图 4-05 所示)。然后按 "co"键,选择平行四边形 "SKEW"调整模式。



(图 4-05) V-尺寸图

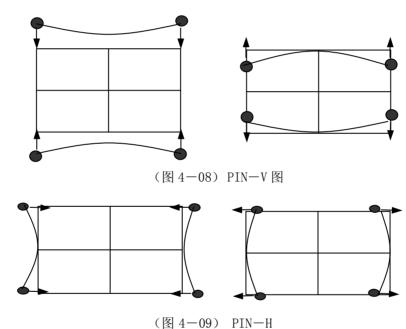
6) G SKEW-H 行平行四边形调整

7) G SKEW-V 场平行四边形调整


按"co"键,选择"SKEW-H"和"SKEW-V"。调整绿水平、垂直线与中心重合(如图 4-06 所示)。 然后按"co"键,选择梯形"KEY"调整模式

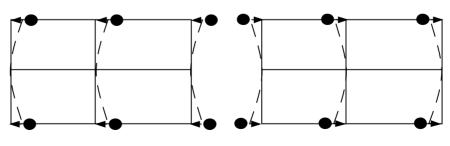
(图 4-06) SKEW 图

8) G KEY 梯形调整


按"co"键,选择梯形"KEY"调整模式(如图 4-07 所示),在四角不卷边情况下,尽量使失真 减至最小。然后按"co"键,选择枕形"PIN-V"和"PIN-H"调整模式。

PIN-V 场枕形调整 9) G

10) G PIN-H 场枕形调整


按"♥"键,选择"PIN-V"和"PIN-H"调整模式。调整绿'PIN-V'(如图 4-08)。注: PIN 一V 调整微微里弯,与 "KEY"配合调整。然后按 "♥ "键,选择弓形 "CORNER"调整模式。

注: 反复调整

11) G CORNER 弓形调整

按" \mathbf{c} "键,选择弓形"CORNER"调整模式(如图 4-10 所示)。

(图 4-10) CORNER 图

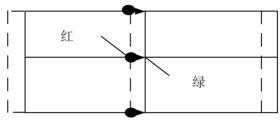
(3) 调试说明

会聚字符显示的是什么颜色,调的就是什么颜色的会聚。其次,其它选项的数值也不能调得太大, 否则易烧坏会聚功放电路:(注意,调后保存,即按"存储"+"确认"键即可)。

7. 红单色会聚粗调

(1) 准备

按"R/G/B"键设为红单色调整模式;


按数次"颜色"键,设为红、绿重合模式;

按 "♥ "键,选择 R 枪中心 "STATIC-H"和 "STATIC-V"调整模式:。

(2) 调试

1) R STATIC-H中心调整

2) R STATIC-V 中心调整

(图 4-11) 红-STATIC 图

调 R一STATIC 使红与绿中心线重合(调试方法同上),使 R 枪中心 STATIC 水平及垂直中心线与光栅框的中心标记一致,即红绿重合为黄色(如图 4−11 所示)。然后按" " 键,选择 R 枪线性 "LINEAR" 调整模式。

3) R LINEAR 线性调整

按"**心**"键,选择 R 枪线性"LINEAR"调整模式,调整 R 水平线性的位置,调试方法、规格及注意事项参考 G-LINEAR (如图 4-03 所示)。然后按"**心**"键,选择 R 枪幅度"SIZE"调整模式。

4) R SIZE-H 行幅调整

5) R SIZE-V 场幅调整

按 "**co**" 键,选择 R 枪幅度 "SIZE—H" 和 "SIZE—V"调整模式 (方法同 G—SIZE,参考图 4—04、图 4—05)。然后按 "**co**" 键,选择 R 枪平行四边形 "SKEW"调整模式。

6) R SKEW-H 行平行四边形调整

7) R SKEW-V 场平行四边形调整

按 "► " 键,选择 R 枪平行四边行 "SKEW—H" 和 "SKEW—V" 调整模式 (方法同 G—SKEW,参考图 4—06)。然后按 "► " 键,选择 R 枪梯形 "KEY" 调整模式。

8) R KEY 梯形调整

按 "♥" 键,选择 R 枪梯形 "KEY" 调整模式 (方法同 G-KEY,参考图 4-07)。然后按 "♥" 键,

选择 R 枪枕形 "PIN"调整模式。

9) R PIN-V 场枕形调整

10) R PIN-H 场枕形调整

按"ご"键,选择 R 枪枕形"PIN-V"和"PIN-H"调整模式(方法同 G-PIN,参考图 4-08、图 4-09)。然后按"ご"键,选择 R 枪弓形"CORNER"调整模式。

11) R CORNER 弓形调整

按 "CO" 键,选择弓形 "CORNER"调整模式 (方法同 G-CORNER,参考图 4-10)。

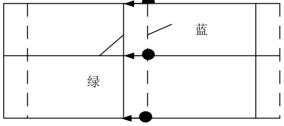
确认红绿重合,如未重合,反复调整上述步骤。

8. 蓝单色会聚粗调

(1) 准备

按"R/G/B"键设为蓝单色调整模式;

按数次"颜色"键,设为蓝、绿重合模式;


按"℃"键,选择B枪中心"STATIC-H"和"STATIC-V"调整模式:。

(2) 调试

1).B STATIC-H中心调整

2).B STATIC-V中心调整

调 B一STATIC 使蓝与绿中心线重合(调试方法同上),使 B 枪中心 STATIC 水平及垂直中心线与光栅框的中心标记一致,即蓝绿重合为紫色(如图 4−12 所示)。然后按 " ご" 键,选择 R 枪线性 "LINEAR" 调整模式。

(图 4-12) 蓝-STATIC

略

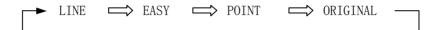
9. 粗调数据保存

按"存储"+"确认"键。

注: 若数据调试后不保存就退出,则将恢复到调试之前的状态。

- 10. 会聚细调(分模式)
 - 1) 进入会聚细调的方法:

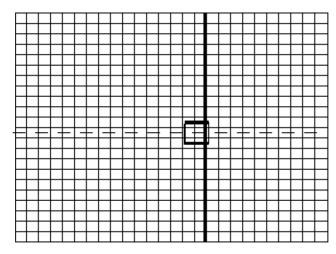
工厂模式下,按 "会聚"键两次进入细调状态。按 "CD"键依次切换所要调整选项。即在会聚粗调状态下再按一下会聚键。


2) 调试菜单

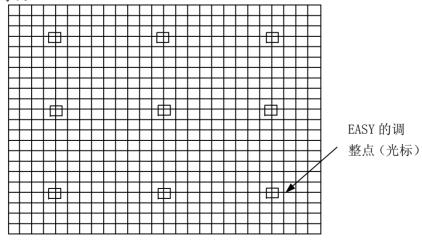
LINE	线调
EASY	区域
POINT	点
ORIGI	边缘

3) 准备

按遥控器的"R/G/B"键,循环切换会聚字符调整模式。


按遥控器的"〇"键,循环切换调整模式。

在"细调"模式,按遥控器的"数据/光栅"键,互换光标和数据。 按数次"颜色"键,设为G单色;


4) 调试方法:

调整 "G-LINE", 使绿会聚方格线性良好均匀(如图 4-13 所示)。

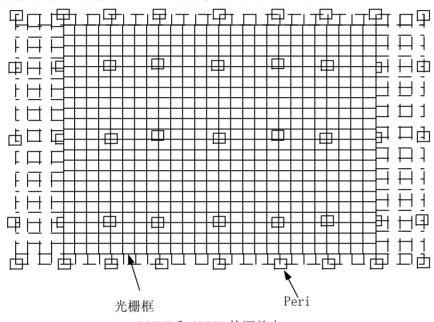
(图 4-13) LINE 模式

按"co"键,选择"G-EASY"模式,调整 EASY。注:此项与用户会聚调整项相同,可以不作调整(如图 4-14 所示)。

(图 4-14) EASY 图

按 "♥" 键,设为 "G-POINT"模式。调整 POINT (如图 4-15 所示)。将每条线调直。

为了提高光栅框边缘会聚调整精度,使用 ORIGI 模式。按 " " 键,确认 "ORIGI"模式,进行 ORIGI 调整,使绿方格图象四边成直线(如图 4-15 所示)。


调整完绿单色后,按 "R/G/B"键,选择红绿重合模式下调整。调试方法同上,使红绿重合;再按 "R/G/B"键,选择蓝蓝色。调试方法同上,使蓝绿重合。

5)细调数据保存

按遥控器的"存储"+"确认"键,记忆调整数据。

建议: 调整过程中定期记忆调整数据。

注: 若数据调试后不保存就退出,则将恢复到调试之前的状态。

□→ POINT 和 ORIGI 的调整点

(图 4-15) POINT 和 ORIGI 图

6) 按"颜色"键,选择三色重合模式。确认会聚,会聚不好时,再次调整

补充: 会聚当前模式的细调清零

在相应会聚粗调模式下直接按一次"22C"键,并将总线初始界面菜单按顺序设置为:

	TIC BUS	ON
1	$\mathtt{CHIP} - \mathtt{ID}$	CM21A
2	NUM	2
3	D	00 00
	WRITE	
	READ	

④ 按一次"存储"键即可

注: 这仅针对当前模式的会聚细调清零

11. 退出会聚的方法

按遥控器的 "待机" + "确认"键

- 12. 退出总线
- 13. 用户会聚调试(略)

(十)、以上会聚调试时的注意事项

- 1. 在进行会聚粗调之前,首先检查会聚基准中心是否有偏移,若有应先将其调准进行。
- 2. 在进行会聚粗调时,对于三基色,应满足先调 G 色,再调 R 和 B 色。建议选在单色模式上进行调试,最后再选在 G、R、B 重合模式下调试。
- 3. 不要轻易对会聚软件进行清零。
- 4. 在调试的过程中,建议最好调一部分就存一部分,以避免无故的断电。
- 5. 会聚粗调一共有 11 项,针对上述步骤只是一个参考,并不是每一项都要进行调试。如 CORNER 和 PIN-H 项一般不作调试。
- 6. LINEAR 与 SIZE-H 之间要配合调试,不能将其中的某一项调得太大,以免出现行线性失真; KEY 与 PIN-V 之间要配合调试,若将其中的某一项调得太大,否侧会出现某一角卷边的失真现象。这其中 有一项没有调好,细调都无法好。
- 7. 细调的 EASY 项一般不作调试。在调试过程中,不能将某一点或线一次性调得太多,应兼顾四的调试。

对用户机不要轻易调试粗调,应首先判断在用户模式或者总线会聚细调模式下能否调好,若能调好, 就不用进行会聚粗调。

三、66HD/88HD/99HD 系列 CRT 背投电视会聚调试

- (一) 进出工厂模式的方法
- 1、进入工厂模式的方法

按一次总线遥控器 "22C" 键,屏幕左上角将出现一个黄色密码框,再连续按遥控器上的数字键 "1"、"2"、"3"进入总线,其总线初始界面菜单如下:

GEOMET	RY		几何
WHITE	BALANCE		白平衡
CONVER	GENCE		会聚
AGING-	-W		白场
AGING-	-В		黑屏
AGC		3	AGC $(0\sim3)$
IF	AGC	8	高放 AGC (0~31)
BUS	STOP	关	总线关闭
AKB	OK	9C	

注:按 "P\"/ "P\" 键上下选择功能,按 "V₊"进入所选功能模式。

2、出工厂模式的方法

直接按总线遥控器的"22C"键即可,进入了几层子菜单就按几次。

- (二)、几何调整(分模式)
 - 1. 进入几何模式的方法:
 - (1) 工厂模式下按一次"几何"键;
 - (2) 工厂模式下选中"GEOMETRY"项;
 - 2. 退出几何模式的方法:

直接按一次总线遥控器的"22C"键即可:

3. 调试菜单

行中心 H-POSITION H-SIZE 行幅 V-POSITION 场中心 V-SIZE场幅 PIN-AMP 枕形 PINPHASE 梯形 UP-CPIN 上边角 下边角 LO-CPIN 场线性 V-LINUP-VLIN 上半场线性 LO-VLIN 下半场线性 S-CORRECT 场S AFC — ANGLE 平行四边形

(三)、白平衡调整(分模式)

- 1. 进入白平衡模式的方法:
 - (1) 工厂模式下按一次"白平衡"键;
 - (2) 工厂模式下选中"WHITE BALANCE"项;
- 2. 退出白平衡模式的方法: 直接按一次总线遥控器的"22C"键即可;
- 3. 调试菜单

R-DRIVE 红激励 G-DRIVE 绿激励 B-DRIVE 蓝激励 R-CUTOFF 红截止 G-CUTOFF 绿截止 蓝截止 B-CUTOFF SUB-BRIGHT 副亮度 SUB-CONT 副对比度

(四)、会聚调整(分模式)

- 1. 进入会聚模式的方法:
 - (1) 工厂模式下按一次"会聚"键;
 - (2) 工厂模式下选中 "CONVERGENCE"项;
- 2. 退出会聚模式的方法:

直接按一次总线遥控器的"22C"键即可;

注: 退出会聚模式之间必须先保存, 其方法是连续按两次"存储"键;

3. 会聚调试菜单

POINT 点 LINE 线

- 4. 会聚内部设置菜单:
 - (1) 进入、退出会聚内部设置菜单的方法: 在会聚模式,光标没有确认的状态下按 "co"键;
 - (2) 调试菜单:

菜单一:	BGA		菜单四:	VFP	
				FSB	
菜单二:	PBH	水平线亮度		FV1	DAF 上半部分波形
	PBV	垂直线亮度		FV2	DAF 波幅度
	HRD	行幅 (左右各 6.5)		FV3	DAF 下半部分波形
	HGD	行线性		FVR	
	HGP	行中心			
	BPH	行边框消隐	菜单五:	GSH	
	VGD	场线性		GSV	
	VGP	场中心		GCH	
	BPV	场边框消隐		GCV	
	HDP	鼓包		GFH	
菜单三:	HVB			GFV	
	VVB			GOH	
	DCT			GOV	
	DCB				

5. 会聚调试说明:

此系列的会聚调试只需调两种模式,即 PAL 制和 NTSC 制。PAL 制需要接上信号才能进行会聚调试, 否则调的是 NTSC 制。

(1) 会聚粗调

进入会聚模式时,此时屏幕显示"POINT"等字样,此时为会聚粗调的调点状态。光标此时位于中心,调节的原则是尽量将相应的 R、G、B 三种颜色的垂直线、水平线分别调至重合状态,即屏幕显示为白色的方格图像为止。

调点:按频道、音量"+/-"键可以上下、左右移动光标位置。当光标移动到所要调节的点时,按"光标/数据"键,使光标字样 CUR 消失。此时按频道、音量的"+/-"键可以上下、左右调节该点的位置。调节好后,按"光标/数据"键,光标字样 CUR 显示,此时可以移动光标到其它位置继续调节。

调线:在调点的状态下,按"光标/数据"键,让光标字样 CUR 消失,再按"ご"键,屏幕上"POINT"字样变为"LINE"字样时进入调线状态。再按一次"光标/数据"键,使光标字样 CUR 显示时,可以按频道、音量"+/-"键可以上下、左右移动光标位置。当光标移动到所要调节的线时,按"光标/数据"键,使光标字样 CUR 消失。此时按频道、音量"+/-"键可以上下、左右调节该线的位置。调试好后,按"光标/数据"键,光标字样 CUR 显示,此时可以移动光标到其它位置继续调节。

字符颜色的切换:按 "R/G/B"键,可以在 R、G、B 三种颜色下切换,此时屏幕上的字符是什么颜色,所调节的就是什么颜色的会聚。

注: 调点和调线时光标均可移出屏幕一格,此时用于调节屏幕边上的点或者线的会聚。

(2) 会聚细调

在粗调状态下,直接按一次"会聚"键,使屏字符中显示的F字样消失为细调。

(3) 存储数据:

按一次"存储"键,屏幕出来"SAVE?"字样时,再按一次"存储"键即可存入调节好的会聚数据。 若调好后又不想存储数据,则重新开关机即可恢复原来的会聚值。

第六章 主要集成电路引脚电压参考值及元件规格对照表

一、300S/480/580/680 系列集成电路引脚电压参考值

1、TDA9332 扫描驱动

脚号	脚名	电压	功能
1	VDRIVEA	1. 26	场驱动 A
2	VDRIVEB	1. 29	场驱动 B
3	EWOUT	3. 34	E-W(东-西)校正输出端
4	EHTIN	1.68	EHT 补偿输入,用以控制场和 E—W 输出信号
5	FLASH	0	快闪检测输入端
6	GND	0	接地端
7	DIGSUP	5. 03	数字电源去藕端
8	HOUT	3. 4	行扫描信号输出
9	SANDC	0. 7	沙堡脉冲输出
10	SCL	4. 4	串行时钟输入
11	SDA	4. 37	串行数据输入
12	HSEL	4. 97	行频选择
13	HFB	0. 77	行逆程脉冲输入
14	DPC	4. 15	动态相位补偿
15	VSC	3. 84	场锯齿波电容
16	${ m I}_{ m REF}$	3. 91	基准电流输入
17	V_P	7. 95	正电源电压
18	DEC _{BG}	4. 75	带隙去耦
19	GND	0	接地端
20	XTAL1	1.09	晶振输入端
21	XTAL0	0.05	晶振输出端
22	LPST-UP	0.04	低功率启动电源
23	V_{D}	0. 37	场信号 V₂输入
24	H_D	0. 37	行信号 H。输入
25	DACOUT	0. 33	数模变换 DAC 输出
26	VIN	3. 67	Ⅴ 信号输入
27	UIN	3. 67	Ⅱ信号输入
28	LUMIN	3. 44	亮度信号输入
29	FBCS0	0	固定电子束电流切换输入
30	RI1	2. 68	插入的 R-1 信号输入
31	GI1	2. 68	插入的 G-1 信号输入
32	BI1	2. 68	插入的 B-1 信号输入
33	BL1	1.88	为 RGB-1 配合的快速消隐信号输入
34	PWL	0. 21	白峰值限制去耦
35	RI2	2. 21	插入的 R-2 信号输入
36	GI2	2. 31	插入的 G-2 信号输入
37	BI2	2. 11	插入的 B-2 信号输入
38	BL2	2. 33	为 RGB-2 配合的快速消隐/混合信号输入
39	V_P	7. 95	正电源电压
40	ROUT	2. 66	红色 R 信号输出

41	GOUT	2.69	绿色G信号输出
42	BOUT	2.68	蓝色B信号输出
43	BCL	3. 7	限制电子束电流输入
44	BLCIN	7. 42	暗电流输入

2、、TA8200AH 音频功率放大器

脚号		直流电压(V)	对地电阻	备 注	
1741 5	功 能	且抓电压(1)	红笔接地	黑笔接地	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1	反相输入端 (AMP2)	1.5	17	10. 5	
2	同相输入端(AMP2)	0	17. 2	14	
3	接地	0	0	0	
4	同相输入端(AMP1)	0	18	14	
5	反相输入端(AMP1)	1.5	13. 5	11	
6	纹波滤波端	9. 7	9. 2	8. 5	
7	输出端(AMP1)	13. 5	1.8	1.2	R×100 档测
8	噪声滤波端	5. 0	8. 5	8. 5	
9	电源端	28. 8	1. 7	720 Ω	R×100 档测
10	接地	0	0	0	
11	静音输出端	6.6	24	12. 5	
12	输出端(AMP2)	13. 0	1.8	1.2	R×100 档测

3、STK392-110 会聚厚膜

脚号	标注	脚名	电压值(V)	脚号	标注	脚名	电压值(V)
1	Sub. Gnd	接地	0	10	+Vcc	后级正电压输入	18. 0
2	Gnd	接地	0	11	Cn. 2 (Out)	信号输出	0
3	Muting		-18.5	12	Cn. 2 (-Vcc)	后级负电压输入	-19.7
4	Pre. (-Vcc)	前级负电压输入	-19. 7	13	Cn. 2 (-In)	反鐀输入	0
5	Pre. (+Vcc)	前级正电压输入	18. 0	14	Cn. 2 (+In)	信号输入	0
6	Cn. 1 (+In)	信号输入	-0.3	15	Cn. 3 (+In)	信号输入	0
7	Cn. 1 (- In)	反馈输入	0. 3	16	Cn. 3 (-In)	反馈输入	0
8	Cn. 1 (-Vcc)	后级负电压输入	-19. 7	17	Cn. 3 (-Vcc)	后级电压输入	-19.7
9	Cn. 1 (Out)	信号输出	-0.3	18	Cn. 3 (Out)	信号输出	0. 2

4、 LA7845 (IC451) 场块

脚号	功能	参考电压 (V)	脚号	功能	参考电压 (V)
1	负电源	-18	5	信号反相输入	1. 6
2	信号输出	1. 2	6	正电源	18
3	泵电源	18	7	泵电源输出	-16
4	信号正相输入	1. 6			

5、3049B(IC9601)比较器

序号	功能	参考电压 (V)	序号	功能	参考电压(V)
1	信号输出	6. 0	5	输入	5. 5

	2	基准	6. 5	6	基准	6. 0
	3	输入	0	7	输出	0
Ī	4	地	0	8	电源	12

6、084C (IC7105A) 低通运放

脚号	功能	参考电压 (V)	脚号	功能	参考电压 (V)
1	输出	0	8	输出	-0.2
2	反相输入	2	9	反相输入	2. 0
3	正相输入	2. 2	10	正相输入	2. 0
4	正电源	12	11	负电源	-12
5	正相输入	2. 6	12	正相输入	2. 2
6	反相输入	2. 6	13	反相输入	2. 2
7	输出	2. 6	14	输出	-0.2

7、A7603 (IC7110) 字符切换

脚号	功能	参考电压 (V)	脚号	功能	参考电压(V)
1	会聚字符B输入	2. 0	9	CPU 字符 R 输入	2. 0
2	字符消隐信号输入	0. 6	10	地	0
3	B输出	0.8	11	CPU 字符 G 输入	2. 0
4	地	0	12	字符消隐信号输入	0. 4
5	G输出	0. 6	13	电源	5. 2
6	R输出	0.8	14	会聚字符 G 输入	2
7	字符消隐输入	0. 4	15	地	0
8	会聚字符 R 输入	0. 2	16	CPU 字符 B 输入	2. 0

8、M37274 (IC1101) CPU

脚号	功能	参考电压 (V)	脚号	功能	参考电压 (V)
1	行同步信号输入	4.8	27	电源	5. 0
2	场同步信号输入	5. 0	28	字符振荡输入	5. 0
3	按键输入	3. 4	29	字符振荡输出	5. 0
4	空脚		30	复位	5. 0
5	VGA 行同步	0.0	31	空脚	
6	VGA 场同步	0.0	32	静音	0.0
7	DAF 开关	0.0	33	空脚	
8	地	0.0	34	空脚	
9	保护信号输入	5. 0	35	空脚	
10	电源指示灯	0.8	36	数据线 2	5. 0
11	待机开关	4. 0	37	数据线1	5. 0
12	空脚		38	时钟线 2	5. 0
13	空脚		39	时钟线1	5. 0
14	VGA 开关	0.0	40	空脚	
15	遥控接收输入	3. 4	41	空脚	
16	空脚		42	空脚	
17	空脚		43	空脚	
18	电源	5. 0	44	3D 复位	0.0

19	空脚		45	空脚	
20	空脚		46	空脚	
21	空脚		47	空脚	
22	空脚		48	空脚	
23	地		49	字符消隐	0.0
24	晶振输入	2. 0	50	B字符	0.0
25	晶振输入	2.0	51	G 字符	0.0
26	地	0.0	52	R字符	0.0

9、TA1218AN (IC3001) (TV 状态)视频切换

脚号	脚名	参考电压值(V)	脚号	脚名	参考电压值(V)
1	LOUT2	4	22	N•C	0
2	ROUT2	4	23	GND	0
3	DELT	7	24	SCL	2.3
4	DELS	3.8	25	SDA	2.5
5	LTV	4	26	SYNC0	0
6	RTV	4	27	ADDR	20
7	VTV	5	28	VV2	4.8
8	LV1	4	29	LV2	4
9	RV1	4	30	YIN	4
10	VVI	5	31	RV2	4
11	LSI	4	32	CIN	4
12	Y/VSI	4.8	33	VCC	9
13	RS1	4	34	COUT	3.8
14	CS1	4.8	35	ROUT1	4
15	LS2	4	36	UOUT1	3.8
16	Y/VS2	5	37	LOUT1	4
17	RS2	4	38	VOUT1	4. 5
18	CS2	0	39	R_0TV	4
19	I/01	1	40	L_0TV	4
20	I/02	1.4	41	N•C	0
21	I/03	0	42	VOUT2	4.5

10、高频头(JS-6B1/L111A2)

10. 10. 10. 10. 10. 10. 10. 10. 10. 10.					
脚号	脚名	参考电压值(V)	脚号	脚名	参考电压值(V)
1	NC	0	8	NC	1
2	VT	2	9	SIF	2
3	VS	5	10	NC	0
4	SCL	2. 4	11	CVBS	0.8
5	SDA	2. 6	12	VIF	5
6	AS	0	13	AV•DIO	1. 4
7	NC	1. 6			

11、DPTV 主要电压(排插 A7)

脚号	主要功能描述	参考电压值(V)

1	供电	5
2	供电	5
9	VSYNC 场同步	3. 2
10	HSYNC 行同步	3. 2
19	供电	5
22	RESET 复位	0

12、 24C16 (IC1102) 存储器

脚号	脚名	参考电压值(V)
1	NC	0
2	NC	0
3	ADD	0
4	GND	0
5	SDA	2. 3
6	SCL	2. 3
7	WP	0
8	VCC	5

13、 24C64 (IC7102) 会聚存储器

脚号	脚名	参考电压值(V)
1	AO	0
2	A1	0
3	A2	0
4	VSS	0
5	SDA	5
6	SCL	5
7	WP	0
8	VCC	5

14、 F6656 (IC801) 电源厚膜

脚号	脚名	参考电压值(V)
1	DGP/FB	2
2	S	0
3	D	300
4	VIN	17
5	GND	0

15、 CXA1875AP (IC7121) I/0扩展

脚号	脚名	参考电压值(V)	脚号	脚名	参考电压值(V)		
1	SW1	5	9	SW2	5		
2	SWO	5	10	SW3	0		
3	DAC4	4.8	11	SAD0	5		
4	DAC3	4.8	12	SAD1	5		
5	DAC2	4.8	13	SAD2	5		
6	DAC1	4.8	14	SDA	5		

7	DAC0	4.8	15	SCL	5
8	GND	0	16	VCC	5

16、 SN54HC157 (IC2707) 同步切换

脚号	脚名	参考电压值(V)	脚号	脚名	参考电压值(V)
1	Ā/B	TV 状态时 OV, VGA 状态时 5V	9	3Y	0
2	1A	3. 2	10	3B	0
3	1B	0	11	3A	0
4	1Y	5	12	4Y	0
5	2A	3	13	4B	0
6	2B	0	14	4A	0
7	2Y	5	15	G	0
8	GND	0	16	VCC	5

17、 LV1116 (IC2001) 音效处理

111 L1	1110(102001)日	/X/C-±			
脚号	脚名	参考电压值(V)	脚号	脚名	参考电压值(V)
1	GND	0	19	DATA	2. 6
2	RIN1	VGA	20	CLCK	2. 6
3	RIN2	TV4	21	VSS	0
4	RIN3	AV	22	L+RLPF	2
5	R LINE OUT	4	23	L-VROUT	4. 2
6	R-DC	4. 2	24	L-VRIN	3.8
7	ST-1	4. 2	25	L-OUT	4. 2
8	LPFC	4.2	26	LBC2	4
9	R-TC1	4	27	LBC1	4
10	R-BC1	4	28	R-TC1	4
11	R-BC2	4	29	HPFC	4. 4
12	R-OUT	4. 2	30	ST2	4. 4
13	R-VRIN	3.8	31	L-DC	4. 2
14	R-VROUT	4. 2	32	L LINE OUT	4
15	L+ROUT	0	33	LIN3	0
16	VREF	4. 2	34	LIN2	4
17	VCC	9	35	LIN1	0
18	VDD	0	36	AGND	4. 4

18、 NE555 (IC1)

脚号	脚名	参考电压值(V)
1	GND	0
2	TRIG	4.8
3	Q	7. 5
4	R	12
5	CV ₀ LT	4.5
6	THR	2
7	DIS	2
8	VCC	12

19、 TMY254 (IC881) 开关电源

脚号	脚名	参考电压值(V)
1		4(交流)
2		0
3		0
4		3.8(交流)
5		150(交流)
6		0
7		0
8		0

20、 STK392-040 (IC7001/IC7002) 会聚厚膜

脚号	脚名	参考电压值(V)	脚号	脚名	参考电压值(V)
1	NC	-18	12	-VCC	-18
2	NC	-18	13	-VCC	-18
3	NC	0	14	-VCC	18
4	3CH IN	-0. 1	15	+VCC	18
5	3CH NF	-0. 15	16	-VCC	-18
6	1CH IN	-0.2	17	-VCC	-18
7	1CH NF	-0.2	18	+VCC	18
8	GND	0	19	-VCC	-18
9	2CH NF	-0. 08	20	1CH OUT	-0. 25
10	2CH IN	-0. 08	21	2CH OUT	-0.2
11	+VCC	18	22	3CH OUT	-0.3

备注: 以上电压除电源外, 随会聚值的不同而变化。

21、 CD0031BM (IC7104) D/A 转换器

脚号	脚名	参考电压值(V)	脚号	脚名	参考电压值(V)
1	DIN3	3. 4 (0 ⁴)	25	OUTC	2.8
2	DIN2	2. 6 (0 ⁴)	26	VDDC	5
3	DIN1	2. 4 (0 ⁴)	27	NC	0
4	BCLK	3.0	28	NC	0
5	WCLK	2. 4	29	GNDC2	0
6	DGND	0	30	NC	0
7	GND4	0	31	VDD2	5
8	OUT4	2.8	32	REF2	3. 6
9	REF4	3. 2	33	OUT2	2. 8
10	VDD4	4.8	34	GND2	0
11	GND6	0	35	VDD3	5
12	OUT6	2.8	36	REF3	2.8
13	REF6	3. 6	37	OUT3	1.8
14	VDD6	5	38	GND3	0
15	GND5	0	39	VDD1	5
16	OUT5	2.6	40	REF1	3. 6

17	REF5	3.6	41	OUT1	2.8
18	VDD5	5	42	GND1	0
19	NC	0	43	DGND	0
20	NC	0	44	DVDD	5
21	NC	0	45	MUTEB	5
22	NC	0	46	DIN6	2. 6 (0 [~] 4)
23	GNDC1	0	47	DIN5	3 (0~4)
24	NC	0	48	DIN4	2. 6 (0 [~] 4)

22、 PT2323-S(TV 状态)音频转换

脚号	脚名	参考电压值(V)	脚号	脚名	参考电压值(V)
1	LCH1	4. 2	15	SDA	2. 6
2	LCH2	2. 6	16	SCL	2. 4
3	LCH3	2. 6	17	SR0	4. 6
4	LCH4	2. 6	18	SL0	4. 6
5	FLI	3. 2	19	SUB0	4. 6
6	FRI	3. 2	20	LT0	4. 6
7	CTI	3. 2	21	FR0	4
8	SUBI	3. 2	22	FL0	4
9	SLI	3. 2	23	LPFN0	4. 6
10	SRI	3. 2	24	LPFIN	3. 8
11	MIXO	4.6	25	R4	4. 6
12	VCC	9	26	R3	3.8
13	REF	4	27	R2	2. 6
14	GND	0	28	R1	2. 6

23、 PT2322-S (TV 状态) 音效处理

脚号	脚名	参考电压值(V)	脚号	脚名	参考电压值(V)
1	RCMID2	4.6	15	RCBAS1 FL	4. 6
2	RCMID1	4.6	16	RCBASI FL	4.6
3	CTRE FR	4.6	17	OUT FL	4. 6
4	IN FR	3.6	18	OUT SL	4.6
5	IN SR	3.8	19	OUT CL	4.6
6	IN SUB	3.8	20	VCC	9
7	VREF	4	21	OUT SUB	4.6
8	GND	0	22	OUT SR	4.6
9	IN CT	3.8	23	OUT FR	4. 6
10	IN SL	3.8	24	SCL	2. 4
11	IN FL	4. 4	25	SDA	2. 6
12	CTRE FL	4.6	26	GND	0
13	RCMID1 FL	4.6	27	RCBAS2 FR	4. 6
14	RCMID2 FL	4.6	28	RCBAS1 FR	4. 6

24、CM0021AF(IC7107)会聚处理

脚号	脚名	参差由压值 (V)	脚号	脚名	参考由压值 (V)
)Jean J	/J=n v -	シーナー 山上 田 (1)	/J-1/- J	/J=4	≥·1.0/12/11. (1)

		8,550		*	
1	XTEST1	5	51	BOUTOSD	0
2	XTEST2	5	52	YMOUT	0
3	VDDI1	3. 4	53	VDD13	3. 2
4	VSS1	0	54	VSS5	0
5	XWC	0	55	YSOUT	0
6	SDAM	5	56	RIN	0
7	SCLM	5	57	GIN	0
8	XST0P	5	58	BIN	0
9	XACKM	5	59	YMIN	0
10	XBUSY	5	60	YSIN	0
11	XI2CRES	5	61	BCLK	0
12	XMUTE	5	62	WCLK1	3
13	XRAMCLR	5	63	WCLK2	3
14	XRESET	5	64	RVOUT1	2.6
15	VSS2	0	65	VSS6	0
16	VDDI2	3. 2	66	VDDI4	0
17	XOFDET	0	67	GVOUT1	2. 3
18	SDAS	5	68	BVOUT1	2.6
19	SCLS	5	69	RHOUT1	2. 3
20	VBLKOUT1	0	70	GHOUT1	3. 2
21	VBLKOUT2	0	71	BHOUT1	3
22	VBLKOUT3	0	72	RVOUT1	0
23	VBLKOUT4	0	73	GVOUT2	0
24	VBLKOUT	0	74	BVOUT2	0
25	PWM1	0	75	RHOUT2	0
26	PWM2	0	76	GHOUT2	0
27	CKOUT	2. 2	77	BHOUT2	0
28	VDDE1	5	78	VDDE2	5
29	VSS3	0	79	VSS7	0
30	VBLKIN	0	80	TEST1	0
31	ODEVSEL	5	81	DAVDD1	3. 2
32	ODEVOUT	0	82	VRN1	1.2
33	ODEVIN	0	83	VRP1	2
34	XTEST3	5	84	AOUT1	1.8
35	E0	0	85	SG1	1.6
36	VVSS	0	86	DAVSS1	0
37	HBLKIN	4.8	87	NC	0
38	E1	5	88	DAVDD2	3
39	ROUTOSD	0	89	VRN2	1.4
40	VSS4	0	90	VRP2	1.6
41	EXCKSEL	0	91	AOUT2	1.8
42	VCOSEL	0	92	SG2	1.6
43	VCOSEL	0	93	DAVSS2	0
44	GOUTOSD	0	94	NC	0
45	VVDD	3. 2	95	XTEST5	5

46	XTEST4	5	96	XTEST6	5
47	VCOIN	0	97	TEST2	0
48	PDOUT	0	98	TEST3	0
49	EL	5	99	XTEST7	5
50	DIVOUT	0	100	TEST4	0

二、66HD/88HD/99HD 系列集成电路引脚电压参考值

1、扫描驱动 IC501(CXA2180)

脚号	脚名	电压参考值 (V)	脚号	脚名	电压参考值 (V)
1	v drv-	3. 4	33	RSH	1.8
2	VREG	5	34	R_OUT	1.6
3	EW_DRV	3. 75	35	GND	0
4	VCOMP	2. 55	36	YSYM2	0
5	HCOMP	2. 5	37	B2_IN	3. 3
6	GND	0	38	G2_IN	3. 3
7	VPROT	0.4	39	R2_IN	3.3
8	VCC5H	5	40	YSYM1	0/4
9	IREF_HV	1.3	41	B1_IN	2.8
10	AFC_FIL	2. 9	42	G1_IN	2.8
11	CERA	1.6	43	R1_IN	2.8
12	HPROT	0	44	PABL_FIL	0
13	L2_FIL	2. 5	45	IREF_FIL	1.1
14	HP_IN	0.6	46	ВРН	2. 6
15	HD_TC	0.6	47	CLP_C	2.6
16	H_DRV	4. 5	48	DPTV_OFF	0
17	GND_H	0	49	VM_OUT	2. 3
18	HS_IN	0.2	50	VCC5	5
19	NC	0.6	51	Y_IN	3.8
20	F0	5	52	CB_IN	3
21	F1	0	53	CR_IN	3
22	VTIM	0. 5	54	Y_0FF	0
23	VS_IN	0.2	55	EY_IN	3. 5
24	GND_OUT	0	56	ECB_IN	3. 5
25	ABL_IN	5	57	ECR_IN	3. 5
26	ABL_FIL	5	58	EXT_SW	0
27	IK_IN	4	59	SDA	2. 9
28	VCC_OUT	9	60	SCL	2. 7
29	BSH	1.6	61	VCC9	9
30	B_OUT	1.7	62	V_OSC	4.7
31	GSH	1.8	63	V_AGC	6
32	G_OUT	1.7	64	V_DRV+	3. 4

2、会聚处理 IC801 (STV2050)

脚号	脚名	电压参考值 (V)	脚号	脚名	电压参考值 (V)
----	----	-----------	----	----	-----------

更多彩电维修资料请到《彩电维修资料网》http://www.tv160.net 查询!

1	SDAM	3. 3	41	GNDH	0
2	SCLM	3. 3	42	VCCH	3.3
3	GNDQ	0	43	GNDG	0
4	GNDK	0	44	VCCG	3.3
5	VCCQ	3. 3	45	DNBH	0
6	VCCK	3. 3	46	DABH	0
7	SDAO	0	47	GNDA	0
8	SDA1	2. 7	48	DNGH	0
9	SCLS	2. 7	49	DAGH	0
10	VBLK	3. 3	50	VCCA	3.3
11	TEST	0	51	DNRH	0
12	VCCN	3. 3	52	DARH	0
13	REST	3. 3	53	GNDI	0
14	ECLK	0	54	REFN	0.4
15	GNDN	0	55	REFC	0.9
16	VIDR	0	56	GNDP	0
17	VIDG	0	57	OGAH	1.8
18	VIDB	0	58	OGAV	1.8
19	VCCD	3. 3	59	GNDB	0
20	GNDD	0	60	DNDV	0
21	OSCL	1	61	DABV	0
22	GRES	0. 5	62	VCCB	3.3
23	GNDF	0	63	DNGV	0. 15
24	FILT	0	64	DAGV	0. 15
25	FLT2	0. 9	65	DNRV	0. 15
26	VCCF	3. 3	66	DARV	0
27	SYNH	0.5	67	GNDC	0.1
28	SYNV	0	68	FREF	0.1
29	GNDJ	0	69	DACF	3.3
30	GNDL	0	70	VCCC	0
31	VCCJ	3. 3	71	ADS0	1.8
32	VCCL	3. 3	72	NC	3. 3
33	NC	1.8	73	VCCM	1.8
34	NC	1.8	74	NC	0
35	NC	1.8	75	NC	0
36	NC	1.8	76	GNDM	0
37	NC	1.8	77	NC	0
38	NC	1.8	78	NC	0
39	NC	1.8	79	NC	0
40	NC	1.8	80	NC	0

3、CPU IC1 (MTV230)

脚号	脚名	电压参考值 (V)	脚号	脚名	电压参考值 (V)
1	OSDR	0.15	22	POWER	0

			I		
2	XIN	2.35	23	LED	0
3	OSDHS	0.35	24	BLK1	5
4	OSDVS	0.2	25	SCL	2.8
5	AV1SW	0.12	26	SDA	3
6	AV2SW	0.12	27	SCLE	4.3
7	X1	1.8	28	SDAE	4.3
8	X2	1.8	29	SCLF	4.8
9	SRSSW	4. 2	30	SDAF	4.8
10	BEAMSW	4. 2	31	DV-RESET	3. 7
11	DAFSW	0. 9	32	CONRESET	4.8
12	PROTECT-E	0. 1	33	M-AFT	2.5
13	NC	5	34	KEYA	3.8
14	NC	0. 5	35	YUVSW	5
15	CSCLD	4	36	VGASW	0.12
16	SDAD	4	37	1080iSW	0.12
17	REMOTE	4.3	38	OSDSW	0.12
18	VDD	5	39	OPROTECT	3.8
19	RST	0	40	OSDFB	0.12
20	VSS	0	41	OSDB	0.12
21	MUTE	0/0.7	42	OSDG	0.12

4、音效处理 IC405 (BD3886)

脚号	脚名	电压参考值 (V)	脚号	脚名	电压参考值 (V)
1	HF1	4.5	17	C1	4.5
2	LF1	4.5	18	C2	4.5
3	TNF1	4.5	19	CAP2	3. 3
4	TNF2	4.5	20	SCL	2.8
5	VIN2	4.5	21	SDA	3. 3
6	SEL2	4.5	22	GND	0
7	VIN1	4.5	23	LINE2	4.5
8	SEL1	4.5	24	LINE1	4.5
9	LS	0	25	OUT2	4.5
10	CAP1		26	OUT1	4.5
11	FIL	3. 3	27	BOUT2	4.5
12	VCC	9	28	BNF2	4.5
13	A1	4.5	29	BOUT1	4.5
14	A2	4.5	30	BNF1	4.5
15	B1	4.5	31	LF2	4.5
16	B2	4.5	32	HF2	4.5

5、开关 IC401 (CD4052)

脚号	脚名	电压参考值 (V)	脚号	脚名	电压参考值 (V)
1	B10	1.2	9	CONA	12/0
2	B12	1.2	10	CONB	12/0

3	BCOM	2.8	11	A13	4
4	B13	3	12	A10	1
5	B11	1	13	ACOM	3.8
6	INHBIT	0	14	A11	1
7	VEE	0	15	A12	1
8	GND	0	16	VDD	12

6、高频头(IT5ER215B)

脚号	脚名	电压参考值 (V)	脚号	脚名	电压参考值 (V)
1	AGC	2~4	7	BM	5
2	NC	0	8	NC	0
3	AS	5	9	VT	33
4	SCL	2. 7	10	NC	0
5	SDA	2. 9	11	IF	0. 5
6	NC	0			

7、视频开关 IC204 (LA7954)

脚号	脚名	电压参考值 (V)	脚号	脚名	电压参考值 (V)
1		4. 1	6		5
2		12/0	7		11
3		12/0	8		5
4		5	9		5
5		0			

8、会聚储存 IC806/IC804 (24C164)

脚号	脚名	电压参考值 (V)	脚号	脚名	电压参考值 (V)
1		0	5		3. 3
2		0	6		0
3		0	7		3. 3
4		0	8		3. 3

9、 数字板排插

脚号	脚名	电压参考值 (V)	脚号	脚名	电压参考值 (V)
1	VCC	5	13	SCL	2.7
2	VCC	5	20	SDA	2. 9
9	VS	0. 3	22	RESET	3.8
10	HS	0. 1			

10、视频放大 IC901(TDA611Q)

脚号	脚名	电压参考值 (V)	脚号	脚名	电压参考值 (V)
1	Vip	3. 1	6	200v	200
2	12v	12	7	Vcn	100
3	Vin	3. 1	8	VOUT	120

4	GND	0	9	Vfb	100
5	Iom	9			

11、运放 IC802/IC803(TL084)

脚号	脚名	电压参考值 (V)	脚号	脚名	电压参考值 (V)
1	OUT	-0.3	8	OUT	-0. 15
2	IN-	0. 15	9	IN-	0. 15
3	IN+	0. 15	10	IN+	0. 15
4	11	11	11	-11	-11
5	IN+	0. 15	12	IN+	0. 15
6	IN-	0. 15	13	IN-	0. 15
7	OUT	-0.15	14	OUT	0.8