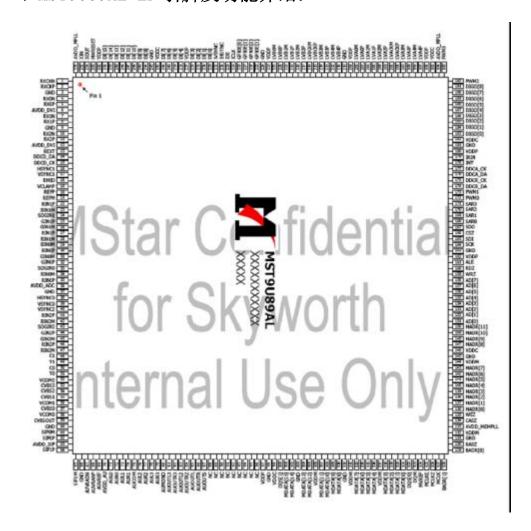
液晶彩电 8M10 机芯维修指南

TVI 彩电维修资料网http://www.tv160.net


一、机芯简介:

8M10 机芯采用台湾 Mstar 公司最新推出超级合一单芯片 MST9U89AL-LF, 性价比很高, 此芯片支持 CVBS、SVH-S、YPbPr、HDMI、AUDIO 信号直接输入, 外挂芯片少, 方便生产、维修。该芯片具有三维梳状滤波器、CTI、IF 补偿、肤色校正, 在线升级等功能。

以前 8M10 机芯只用在 98 系列的机型上,8M10 机芯主配 LG 屏,只有 40L98SW 的配三星 屏。本机芯配以下四种机型:8M10-32L98SW;8M10-37L98SW;8M10-40L98SW;8M10-42L98SW;其整机由8M10 主板,电源板,电源开关板,键控板,接收头板,感光板组成,功能有HDMI,VGA,YUV,S端子,V12,3D数码解像,256 频道,16:9 画面,环绕声,立体声(AV)等功能。

特别注意: 8M10-32L98SW; 8M10-37L98SW; 8M10-42L98SW; 用的是 LG 屏, 屏逻辑板供 电是 DC+12V, 主板上接电感 L2。8M10-40L98SW; 用的是三星屏, 屏逻辑板供电是 DC+5V, 主板上接电感 L4。

二、MST9U89AL-LF 引脚及功能介绍:

1、Mst9U89 芯片供电引脚

Power Pins		71	
Pin Name	Pin Type	Function	Pin
AVDD_DVI	3.3V Power	DVI/HDMI Power	6, 12
AVDD ADC	3.3V Power	ADC Power	36
AVDD SIF	3.3V Power	STF Power	63
AVDD AU	3.3V Power	Audio Power	70
AVDD MEMPH	3.3V Power	PLI Power	133
AVDD MPH	3.3V Power	PH Power	194, 256
VDDM	3.3V Power (SDRAM) /	Memory Interface Power	106, 112, 117, 132,
	2.5V Power (DDR)		144
VDDP	3.3V Power	Digital Output Power	97, 162, 180, 196,
			209, 223, 237, 252
VDDC	1.8V Power	Digital Core Power	99, 146 , 182, 195,
			242
GND	Ground	Ground	3, 9, 37, 60, 66, 98,
			103, 111, 131, 145,
1			163, 181, 210, 224,
			213

2、 Mst9U89 芯片 CPU 速度控制引脚

- ① PWM0 172 引脚必须接 1K 的上拉电阻 R84;
- ② PWM1 173 引脚必须接 1K 的下拉电阻 R76;
- ③ PWM2 192 引脚必须接 1K 的下拉电阻 R75;
- ④ PWM3 193 引脚必须接 1K 的上拉电阻 R66。

注:以上四个引脚电阻,必须严格按照这个方式连接。如果以上电阻有损坏将造成开机困难、遥控不灵敏、程序无法升级等现象。

3、Mst9U89 芯片复位

4、Mst9U89 芯片对于 8M10 机芯的相关信号的输入

- ① Mst9U89 芯片第 27 引脚、25 引脚、22 引脚分别为 VGA 的 R、G、B 信号输入; 16 引脚为 VGA-HS 输入、17 引脚为 VGA-VS 输入。
- ② Mst9U89 芯片第 1、2 引脚为 HDMI 的时钟差分信号入第 4、5、7、8、10、11 引脚为 HDMI 的差分信号输入。
- ③Mst9U89 芯片第 35 引脚为 Pr 信号输入、第 30 引脚为 Pb 信号输入、第 32 引脚为 Y 信号输入。
- ④Mst9U89 芯片第 51、50 引脚分别为 SHVS 的 Y、C 信号输入; 第 53 脚为 AV1 视频信号输入。
- ⑤ Mst9U89 芯片第 54 引脚为 AV2 视频信号输入。
- ⑥ Mst9U89 芯片第 59 引脚为视频输出。
- ⑦ Mst9U89 芯片第83、84 引脚为8M10 机芯的音频输出。
- ⑧ Mst9U89 芯片第 85、86 引脚的音频输出至功放 TDA2616 的 4、6 脚。
- ⑨ Mst9U89 芯片第 80 引脚为 TV Mono 音频输入。
- ⑩ Mst9U89 芯片第 71、72 引脚为 VGA 伴音输入; 第 73、74 引脚为 AV2、Y2U2V2 伴音输入; 第 76、77 引脚为 AV1、SVHS 的伴音输入。

以上信号输入、输出的具体流程请参考原理图。

5、在线烧录 Flash 相关引脚功能:

Pin Name Pin Type SCK I/O w/ 5V-tolerant		Function	Pin
		SPI Flash Serial Clock / General Purpose Input/Output (GPIOD[14])	
SDI	I/O w/ 5V-tolerant	SPI Flash Serial Data Input (Output Pin) / General Purpose Input/Output (GPIOD[15])	165
CSZ	I/O w/ 5V-tolerant	SPI Flash Chip select / General Purpose Input/Output (GPIOD[16])	166
SDO	I/O w/ 5V-tolerant	SPI Flash Serial Data Output (Input Pin) / General Purpose Input/Output (GPIOD[17])	167

6、伴音制式切换控制引脚

通过 Mst9U89 芯片第 154 引脚,输出高低电平来控制 Q24 的开关状态,从而达到控制高频头 BW 端的电平,达到控制伴音制式的目的。

7、Y、Pb、Pr 切换控制引脚

当为 Y1、Pb1、Pr1 时第 160 引脚输出高电平; 当为 Y2、Pb2、Pr2 时第 160 引脚输出低电平。

8、I2C 总线控制引脚

Mst9U89 芯片第 151、152 引脚分别为 SDA、SCL 以控制高频头和时钟 IC。此机芯的 I 2.C 总线如果出现问题,可能导致开机缓慢等现象。

三、高频调谐器介绍

1: 引脚功能以及相关电压如下:

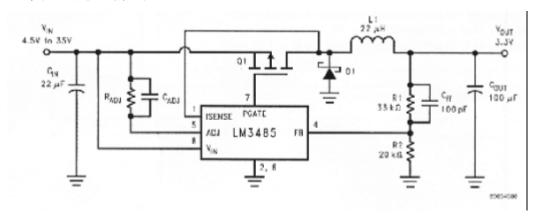
端子序号	端子名称	端子电压
Terminal No	Terminal name	Voltage
1	NC	
2	BT	OPEN
3	VCC2	5. OV (MAX 150mA)
4	SCL	
5	SDA	
6	AS	
7	NC	
8	NC	
9	NC	
10	BW	0/5V
11	2nd SIF Output	
12	Video Output	
13	VCC3	5. OV (MAX 170mA)
14	AF	

2: 中频如下表;

System	B/G	D/K	I	NTSC M/N
fip	38.90 MHz	38.90 MHz	38.90 MHz	38.90 MHz
fic	34.47 MHz	34.47 MHz	34.47 MHz	35.32 MHz
Fis1	33.40 MHz	32.40 MHz	32.90 MHz	34.4 MHz

四、DC TO DC 介绍

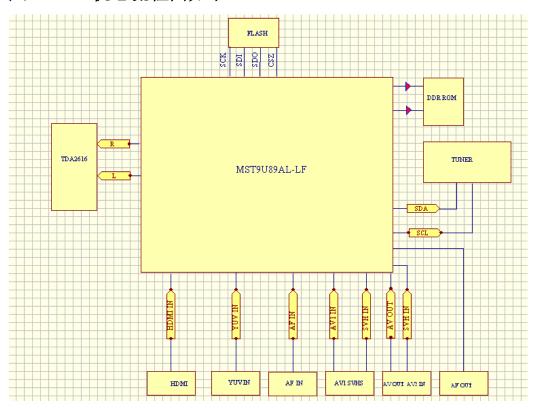
1: 此机芯采用 LM3485 +AP4435 完成 12V 转 5V:

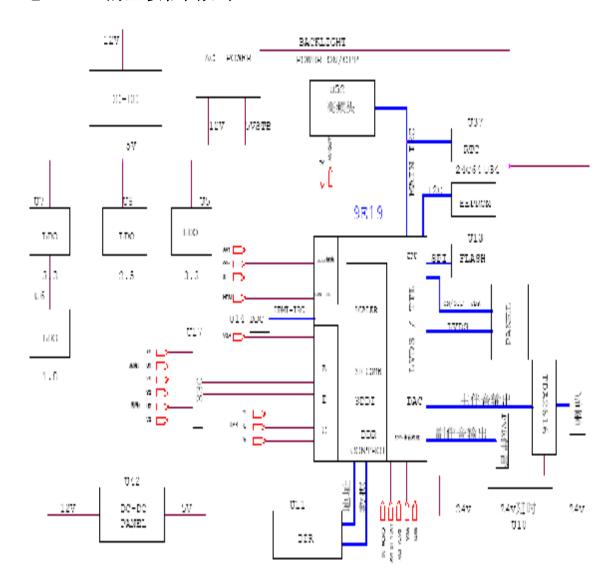


2、LM3485 引脚描述如下

第① 引脚为电流检测输入脚;第②、⑥引脚为接地脚;第③引脚悬空;第④引脚为电压反馈输入端;第⑤引脚为过流保护调节点;第⑦引脚门限驱动输出;第⑧引脚为供电脚。

Pin Name	Pin Number	Description
ISENSE	1	The current sense input pin. This pin should be connected to Drain
		node of the external PFET.
GND	2	Signal ground.
NC	3	No connection.
FB	4	The feedback input. Connect the FB to a resistor voltage divider
		between the output and GND for an adjustable output voltage.
ADJ	5	Current limit threshold adjustment. It connects to an internal $5.5\mu A$ current source. A resistor is connected between this pin and the input Power Supply. The voltage across this resistor is compared with the V_{DS} of the external PFET to determine if an over-current condition has occurred.
PWR GND	6	Power ground.
PGATE	7	Gate Drive output for the external PFET. PGATE swings between
		V _{IN} and V _{IN} -5V.
VIN	8	Power supply input pin.

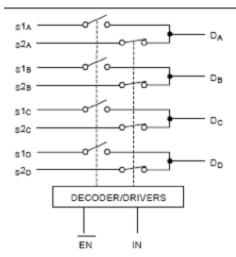

3: 典型运用电路如下


五、功放 TDA2616 介绍

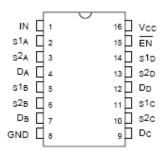
引脚功能如下: 第 ①、⑨引脚为 L、R 声道输入; 第②引脚为静音脚, 低电平有效; 第④、⑥引脚为 L、R 声道输出; 第⑦引脚为供电脚; 第③、⑧引脚 1/2VCC 第⑤引脚接地。

六、8M10 机芯流程图如下:

七、8M10的主板框图如下:



七、程序存储器 FLASH W25X40 介绍


PAD NO.	PAD NAME	I/O	FUNCTION
1	/CS	ı	Chip Select Input
2	DO	0	Data Output
3	/WP	ı	Write Protect Input
4	GND		Ground
5	DIO	1/0	Data Input / Output
6	CLK	1	Serial Clock Input
7	/HOLD	ı	Hold Input
8	VCC		Power Supply

八、YUV 切换开关 PI5V330SQE 介绍

1: 内部模块图如下:

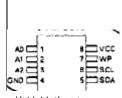
2: PI5V330SQE 引脚介绍

Pin Name	Description
s1a, s1b, s1c, s1d s2a, s2b, s2c, s2d	Analog Video I/O
IN	Select Input
EN	Enable
D_A, D_B D_C, D_D	Analog Video I/O
GND	Ground
Vcc	Power

3: PI5V330SQE 真值表

EN	IN	ON Switch
0	0	slasslesslessle
0	1	s2A, s2B, S2C, s2D
1	X	Disabled

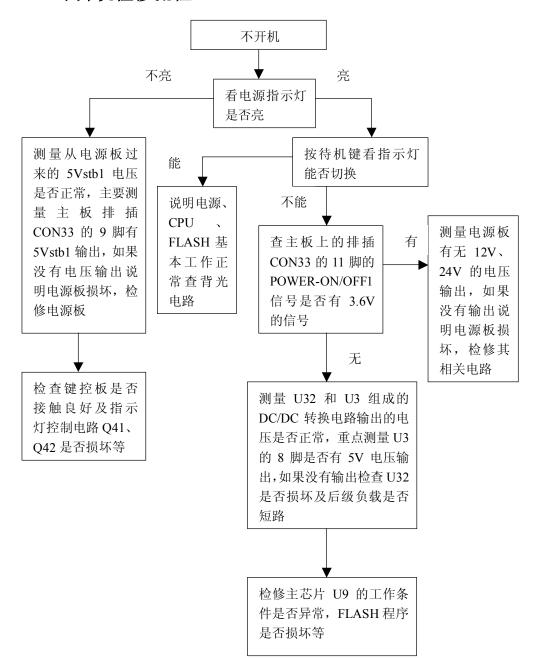
九、存储器 AT24C64N 介绍

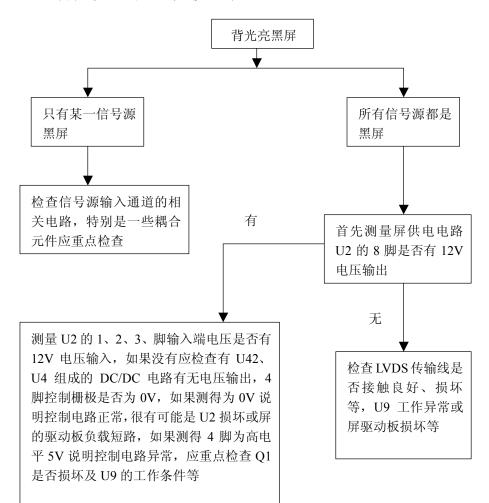

- 1、第①、②、③引脚为地址输入;第④引脚为接地脚;第⑤、⑥引脚分别为 SDA、SCL 总线;;第⑦引脚为写保护引脚;第⑧引脚为 VCC 供电。
- 2、注意芯片的供电为 3.3V, 第⑦引脚为低电平写入数据。
- 3、芯片的地址定义: 由于芯片的第①、②、③引脚为接高电平,根据下面的真值表可以得知地址为 AEH。

	Device Type Identifier			Chip	Enable Ad	dress	RW	
	b/	b6	bb	b4	b3	b2	b1	b0
Device Select Code	1	0	1	0	E2	E1	E0	R₩

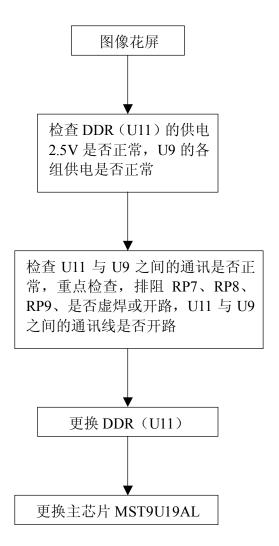
4: 8M10 机芯的所有菜单模拟量、开机时序、HDMI KEY 等数据都存储在 AT24C64 中。

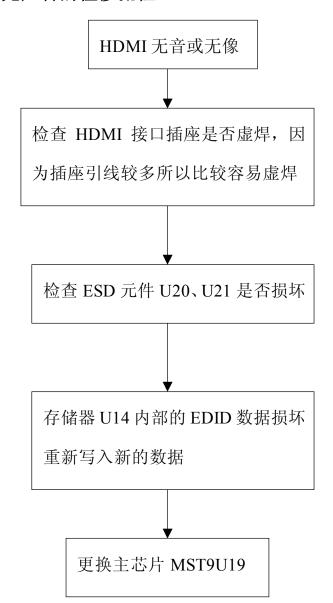
十、HDMI EDID 存储器 AT24C02 介绍

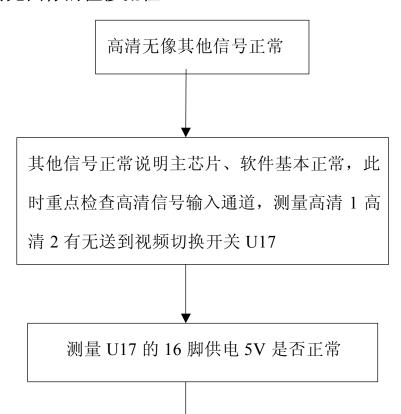

Pin Name	Function
A0 - A2	Address inputs
SDA	Serial Data
SCL	Serial Clock Input
WP	Write Protect
NC	No Connect


由于芯片的第①、②、③引脚为接低电平,其地址为 AOH

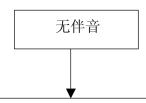
8M10 机芯故障检修流程


1、 不开机检修流程:


2、 背光亮黑屏的检修流程:


3、 图像花屏的检修流程:

4、 HDMI 无声音的检修流程:



5、高清无图像的检修流程:

测量切换开关 U17 的 1 脚切换控制信号是否正常, 1 脚是有 U9 的 160 脚控制 Q31 从而改变 U17 的 1 脚电平, 当 U17 的 1 脚为高电平时高清 1 通过, 当 U17 的 1 脚为低电平时高清 2 通过, 在进行切换时如果测得 U17 的 1 脚电压没有变化时应重点检查 Q31 及 U9

6、 伴音的检修流程:

首先从后级喇叭、功放查起,重点检查 TDA2616 的 7 脚 24V 供电是否正常,如果无 24V 供电应重点检查, MOS 管 U10 的 4 脚的控制栅极电压是否处于的高电平 5V,如果为高电平 5V 应重点检查 Q6及 D50等元件

检查 TDA2616 的 2 脚是否处于静音状态,当其 2 脚为低电平时静音

用干扰法干扰 TDA2616 的 1、9 脚看是否有干扰音,如果有干扰音,应检查主芯片 MST9U19 的 85、86 脚是否有音频信号输出,如果无音频信号输出,说明 MST9U19 内部的音效处理电路损坏造成的更换芯片

如果按以上步骤仍然不能排除此时应更换 FLASH 程序或者升级程序

8M10 机芯调试说明

- 一、 如何进出工厂菜单、老化模式及工厂菜单各项功能(8M10)
 - 1、进入工厂菜单:按音量减到0,同时按下遥控器的"屏显"键。
 - 2、退出工厂菜单:按"屏显"键,退出工厂菜单。
 - 3、进入老化模式:按音量减到0,同时按下遥控器的"交替"键。
 - 4、退出老化模式:按遥控器上的"电源" 键,进入待机,再按"待机"键开机,即可退出老化模式。

二、工厂菜单各项功能: 音量减到 0, 同时按 "屏显"键进入工厂菜单第一页包括:

DEVICE	9U19/24C64	DEVICE	9U19/24C64	选择图象缩放芯片/E2P
BANK	00	ADDR1	00	地址选择
ADDRESS	3 00	ADDR2	00	地址选择
VALUE	00	VALUE	00	寄存器的值
WRITE	>>	WRITE	>>	写入操作
DIRECT	OFF	DIRECT	OFF	直接写入(ON)/手动(OFF)

第二页包括: (按"菜单"键进入下一页)

HSTART	46	行起始位置
VSTART	09	场起始位置
HSIZE	8D	行大小
VSIZE	1A	场大小

第三页包括: (按"菜单"键进入下一页)

R OFF.	7F	红色偏移量调整
G OFF.	7F	绿色偏移量调整
B OFF.	7F	蓝色偏移量调整
R GAIN	33	红色增益量调整
G GAIN	33	绿色增益量调整
B GAIN	33	蓝色增益量调整
AUTOTUNE	>>	白平衡自动调整

三、需要烧写程序的 IC

- 1. 主板上 U14 (24C02) 需要烧写 HDMI-EDID, 可在上 SMT 之前先烧录。
- 2. 主板上 U13 (SPI-040) 需要烧写主程序,可在上 SMT 之前先烧录。。
- 3. 主板上 U34 (24C64) 需要烧写 E2PROM 母片,可在上 SMT 之前先烧录。
- 4. 主板上 U34(24C64)需要烧写 HDMI-KEY,可在整机上线每一台需要烧录

四、VGA 模式下的白平衡调整

- 1. 640*480 模式白平衡不能自动调整;
- 2. 在 600*800、1024*768 的模式下输入灰阶信号,进入工厂模式中下选中"AUTO PHASE", 反复按遥控器上的音量减键,直至白平衡调好为止;
- 3. 按遥控器上的"屏显"键退出工厂菜单

五、V12 六基色检查

在 TV/AV/SVHS/YUV/VGA/HDMI 状态下,按遥控器上的"V12"键,看演示模式下的"三基色"与"六基色"的对比是否有好的演示效果。

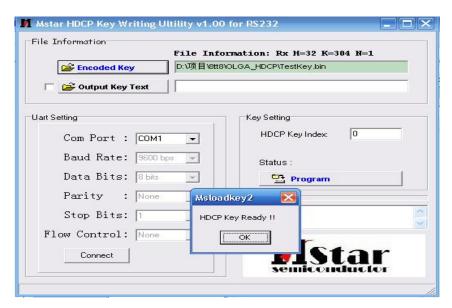
六、出厂设置

在 TV 模式下:

图像制式设置为: PAL 将声音制式设置为: D/K 将换台模式设置为: 静像模式。 语言设置为: 中文 OSD 位置设置为: 中 彩色制式设置为: AUTO 手动背光调节设置为: 100

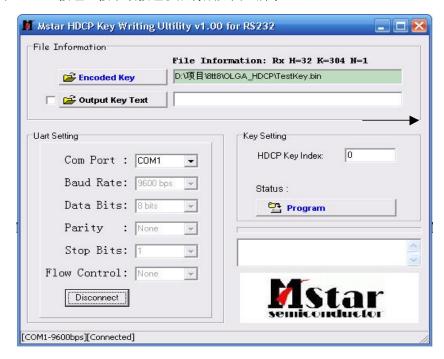
七、高压检测

按厂内要求的交流 3000V/8. 2MHZ 的要求,看是否能够通过。如果不能通过,则为坏机处理。


八、关于 HDMI-KEY 的烧写流程(8M10)

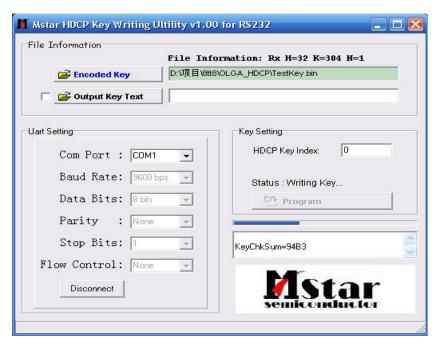
- 1、分割编码产生 key。(由生成线提供)
- 2、连接标准 VGA 延长线。
- 3、key 数据的烧写。
- a. 首先运行"MsLoadKey2.exe"(运行以后如图一所示)

图一

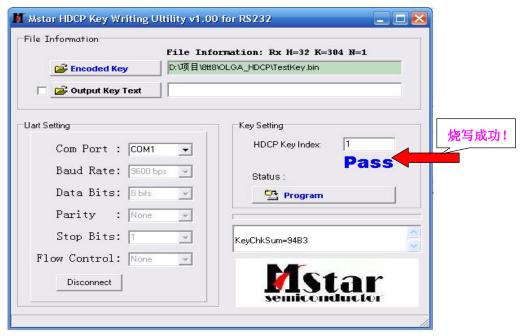

b. 单击 Encoded Key,将已经分割编码生成的 key 载入:载入成功后将显示: HDCP Key Ready !! (如图二所示)

图二

然后再单击"ok"。


c.单击 Connect 按钮,按下改按钮以后将成如图三所示:

图三


注意: 此时左下角按钮变成: Disconnect

d. 最后按下 Program 按钮,在 program 按钮下方将会有一横杠从左向右填满 Status 将显示: Writing Key......(如图四所示)

图四(烧写过程中)

HDCP Key Index 的起始地址为 0,每操作一次成功后 HDCP Key Index 地址会自动 累加 1。并且在地址的下面会有 **Pass** 显示(如图五)。

图五 (烧写成功)

若操作不成功将显示 "Fail"(失败)。

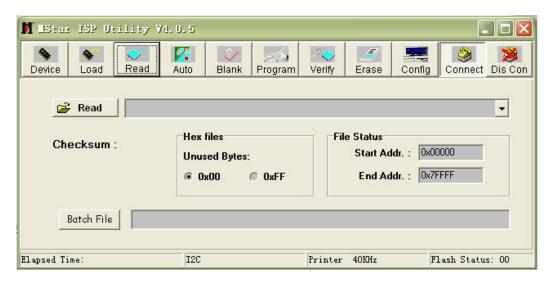
4. 烧写完一台机器以后,将连接电视机一端的端口拔下,再插入下一台机器,直接点击 Program 即可。

九、 如何在线升级软件(8M10)

CPU 的在线升级:

1、pu 升级软件有一个文件如下所示(由设计师提供)

- 2、接标准 VGA 延长线。
- 3、运行 ISP_Tool V4.0.5. exe 如图六所示:


图六

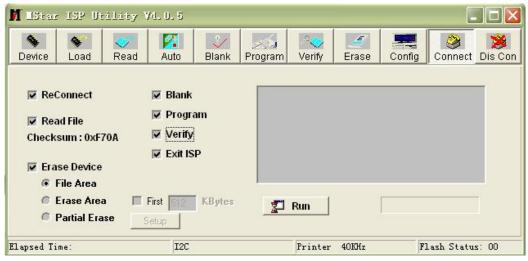
4、单击 Connect 按钮,将弹出如图七所示对话框


图七

5、单击确定后,再单击 Read 按钮,将弹出如图八所示对话框

图八

6、单击 **Read** ,选择 MST_Flash_512.bin 文件,这里假设它存在桌面 061215 文件 下的 MSTMCU_LCD_512 文件内。


图九

7、选中后,再按打开按钮。将弹出如下对话框。

图十

8、单击 Auto 按钮

图十一

- 9、然后单击 Run 按钮即可。
- 10、升级成功后将显示: (见图十二)

图十二

11、升级完成后将连接到电视机上的端口取下,插入下一台机器,重复上述操作。

十、如何烧录 SPI

1、点击 Gang08 工具软件(图 1), 出现(图 2) 所示界面:

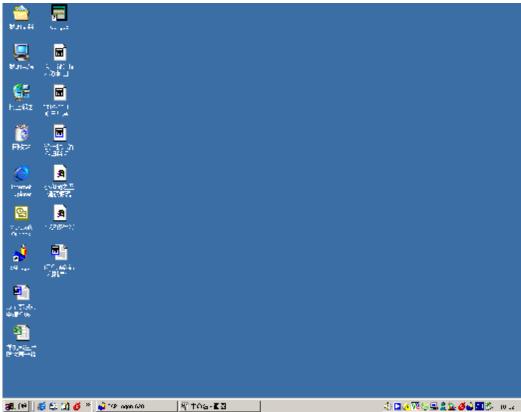


图 2

2、单击(图2)箭头所示图标,出现(图3)所示界面

图 3

3、双击 PMC 选项 (图 3 箭头所示), 出现 (图 4) 界面

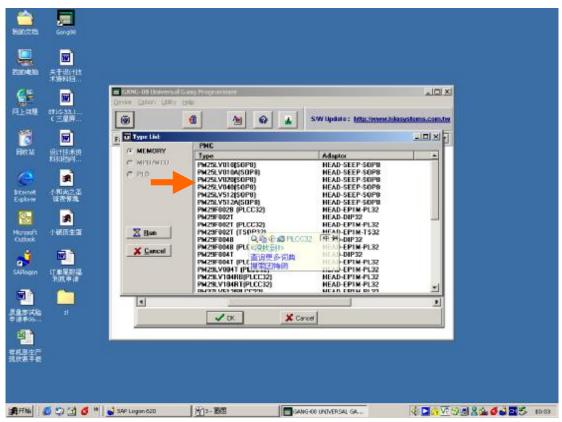


图 4

4、双击 PM25LV040(S0P8)项(图 4 箭头所示),出现(图 5)界面

图 5

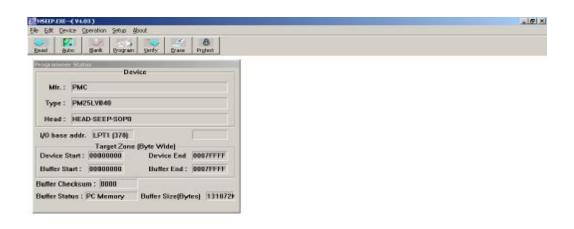


图 6

6、点击 "File"菜单,选择 "Load File",如(图7)

7、双击 MST_Flash_512 文件(图 7 箭头所示), 出现(图 8) 界面

8、选择"Binary",点击"OK"后,如(图9)

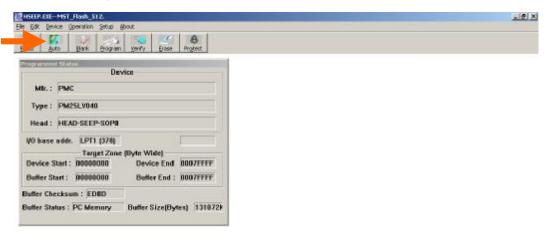


图 9

9、单击"Auto"(图9)箭头所示图标,出现(图10)所示界面

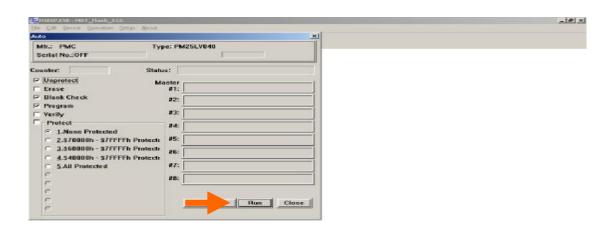


图 10

10、单击"Run"(图 10)箭头所示图标,开始烧写程序,程序烧写完毕后取下 IC 即可,如(图 11)。

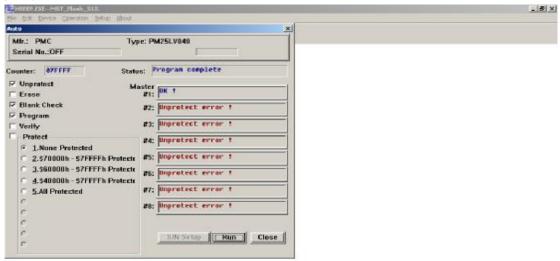


图 11

十一、如何烧录 24C02 (HDMI-EDID) /24C64

24C02/24C64 的烧录过程与 SPI 的烧录过程基本相同,请按以下步骤执行。

1、点击红色箭头所示图标

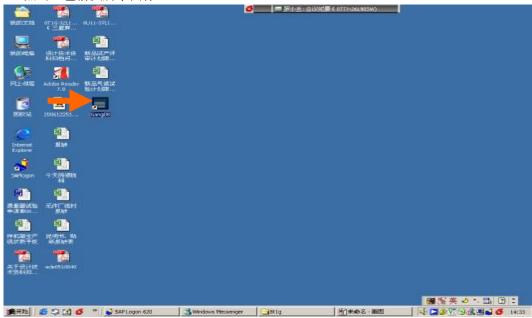


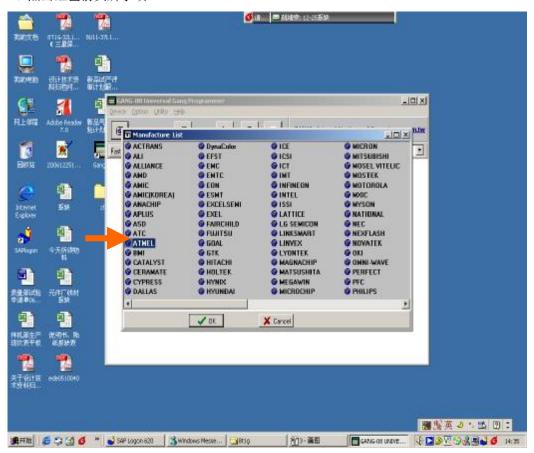
图 1

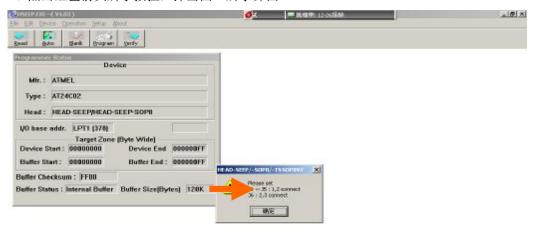
2、点击红色箭头所示按扭,弹出图3所示界面



图 3

3、点击红色箭头所示项




图 4

4、点击红色箭头所示项(24C02/24C64)

图 5

5、点击红色箭头所示按扭,弹出图7所示界面

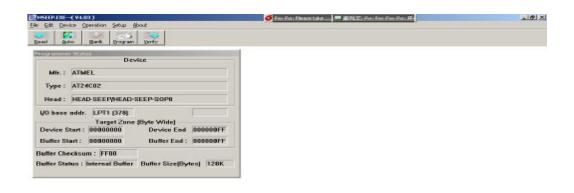
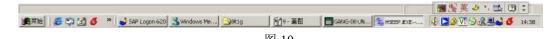


图 7

6、选择 "File—LoadFile to Programmer Buffer"

图 8


7、选择被烧录文件(红色箭头所示)

8、选择"Binary"项,点击红色箭头所示按扭,弹出图 11 所示界面

9、点击红色箭头所示按扭,弹出图 12 所示界面

图 11

10、点击红色箭头所示按扭,开始烧录。

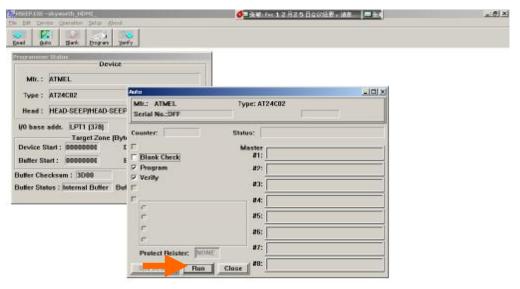


图 12

11、烧录完毕后取下 IC 即可。

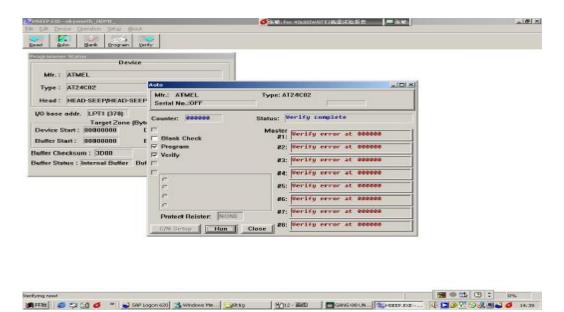


图 13