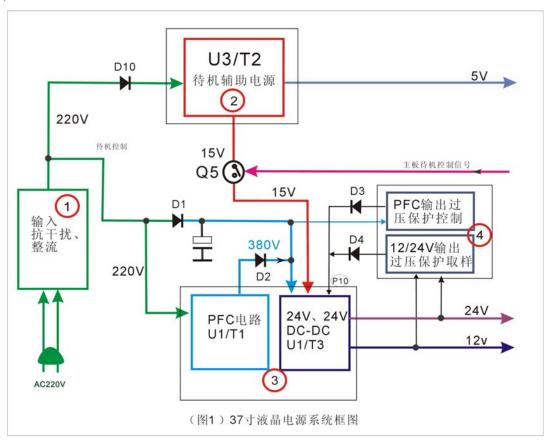
37 寸液晶电源原理与维修

TViii 彩电维修资料网 http://www.tv160.net

一、概述

该电源为创维公司自行设计生产的一种 37 寸液晶电视内置电源, BOM 编号: 168P-P37T 00-08, PCB 板编号: 5800-P37T00-13, 成品物料编号: 534L-0937T0-06。


该电源设计输出功率 190W, 电源效率高于 85%, 功率因素高于 0.9。设计允许负载电流:

5V (待机电源) 0.5A;

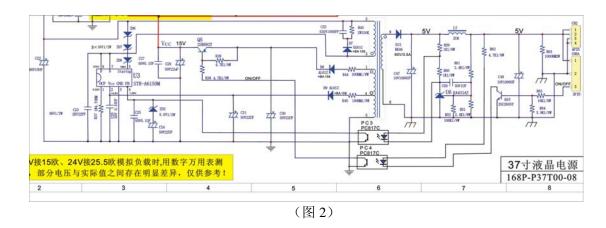
12V (USB 及主板供电) 3A:

24V-2(背光板供电)6A。

本电源由整流滤波网络、待机辅助电源(以下称副电源)、PFC、DC-DC、输出过流、过压保护电路等**四大部分**组成。本电源采用成熟的器件和单面板设计,免调试、维修检测方便、工作稳定可靠。已完全替代外厂产品配套使用于创维各型 37 寸液晶电视。系统构架如附图 1

二、基本工作原理

1、电源工作流程简述


1.1 市电经两极共模抗干扰电路后送全桥整流,输出约 220V 脉动直流,分两路分别送

副电源和功率因素校正 PFC 电路, PFC 输出约 380V 直流电源送后级 DC-DC 转换电路,输出稳定的 12V 和 24V 直流电源为液晶屏和主板电路供电。

- 1.2 市电接通后, 待机辅助电源首先启动, 输出+5V(主板系统电源) 到主板系统控制电路, 随后, 主板送出一个约 3V 的开机 ON 控制信号, 使副电源电路中的待机控制管 Q5导通, 输出一个 15V 辅助电源, 为 PFC/DC-DC 转换控制电路芯片提供辅助 VCC。
- 1.3 本电源采用 STR-E1555 配合外置 MOS 管和变压器完成 PFC 和 DC-DC 电压变换。 当 P1 启动供电端子连接到起动电路和 P15 Vcc 端 (控制部分用电源)。P1 输入的电源以 5.6mA 的定电流为 P15 外接的电解电容充电,Vcc>16.2V(typ)时 IC 起动。PFC 电路开始 工作,P3 端输出激励控制信号给 Q2,控制 Q1 工作,此后 T1 的 P2——P3 绕组将反馈信号 送到的 P4 零电流检测电路输入端子。由 R20~22、R23 等组成的 PFC 输出稳压取样分压电 路把 PFC 电路输出电压变化信息反馈到 P6 端,控制内部电路实现 PFC 输出稳压。PFC 电路输出的 380~400V 稳定的直流电源给后级 DC-DC 转换电路供电。
- 1.4 当 DC-DC 电路 15V 辅助电源和 380V (300V) 直流供电同时送达 U1 后, DC-DC 转换电路开始工作。由 R58、R40、U7、PC2 等组成的误差取样电路把输出电压变化信息反馈到 U1 的 P14 端,DC-DC 电路输出稳定的 12V 和 24V 电源,给电视主板和背光板提供电源。

2、 5V/15V 副电源

2.1、 副电源原理图 (如附图 2 所示)

2.2 U3/STRA6159M 引脚功能简介

- P1 原边过电流检出信号输入端(外接取样电阻,取样电压高于 0.77V 保护电路动作,电源无输出)
 - P2 Vcc 控制电路的电源输入端(启动电压 17.5V,工作维持电压高于 10.5V 即可) P3 地
- P4 定电压控制信号/过负载保护信号输入(电压反馈取样输入脚FB)
- P5 启动电源输入脚(可直接接电源、本机设计有外接欠压保护电路,当电压低于 120V 时,该脚无电压,电源不启动)。

P6 空脚

P7/8 内部 MOS 管漏极。

2.3 工作流程

本副电源为主板 CPU 控制系统和电源板其余各 IC 提供辅助电源,如果它不能正常工作,整机将瘫痪。当市电接通后,U3 的 P5 有正常的启动供电(该供电仅在启动瞬间起作用,启动完成后 P5 端无需电流输入),起动电路是由 Startup 端子(P5)连接到输入电压经整流后的直流电压部分而构成。从 Startup 端子输入的电流被 IC 内部电路定电流处理后(800 μ A Typ)经 I C 内部给连接在 Vcc 端子(P2)的电容 C26 充电。电源的起动在 Vcc 端子电压上升到动作开始电源电压 Vcc (0N)=17.5V (TYP)时,开始动作(到动作开始为止的起动时间仅由电容 C26 的容量决定,而和 Startup 端子的直流电压无关)。此后 T2 的 P4 端的感应电压经过 D8 整流、C30 滤波为 P2 端提供大于 17.5V 的 VCC 电压,电源启动完成。此时 R51、R61、U6、PC3 等组成的误差取样电路,将输出电压变化信息反馈到 P4(FB 端)控制内部激励信号占空比,从而实现电源的稳压输出。副电源输出的 5V 为主板 CPU 控制电路供电,待主板控制电路工作正常后,发出开机控制信号 ON(主电源开机)送回电源板,使 Q5 导通,把 15V 辅助电源送到后级 PFC 和 DC-DC 校正电路 VCC 端,此后主电源启动,主板视频处理电路开始工作、屏背光点亮,电视开机。

注: P4端的 OFF Timer 电路决定 MOS FET 的关断时间,并产生 MOS FET 导通开始的定时脉冲信号。这和通常的 PWM 控制方式不同,如果 IC 内部的 OCP 比较器和 FB 比较器没有输出 ON 期间中止信号给 PRC Latch 复位端子(R), MOS FET 将不被关断,振荡动作不会继续。

2.4 主要外围器件作用

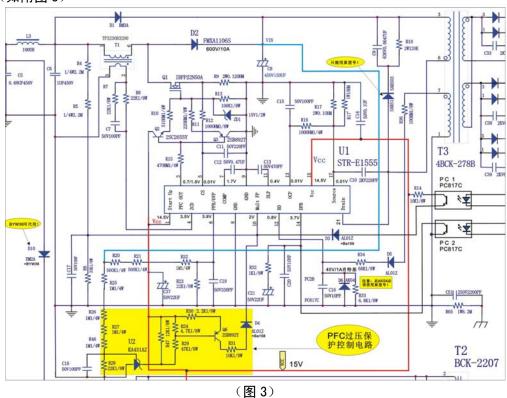
P1 外接 R37 为过流保护取样电阻,当其上的压降达到 0.77V 电源即进入过流保护状态,无 5V 和 15V 电源输出,故该电阻变质可能导致过流保护控制电路误动作,电源表现为带负载能力差或无法正常启动!

保护过程: 在每个脉冲内,对 MOS 管的漏极电流的峰值进行检测,当漏极电流的检出(1 脚和 3 脚 GND 间的)电压达到 OCP 端子的门坎电压 0.77V (TYP)时, MOS 管被关断。注:保护在负载电流正常后可自动解除。

P4 外接电容 C25 为抗干扰电容,若击穿电源无输出,若漏电将导致副电源输出电压低。 ZD2、C24 等组成了输出过载保护动作延时电路。C24 若开路,电源正常工作时无明显变化,若短路或严重漏电,将导致电源过载时过载保护电路不动作而击穿 MOS 管。ZD2 是为防止电源正常工作时 C24 接入电路影响而设立的,该二极管击穿或者漏电时,由于和光电耦合器并联的电容 C24 的电容值较大,该端子 FB 功能对负载变化的响应会变坏。

U6 为误差取样可调稳压管,外接取样电阻 R61 阻值变大输出电压升高,R51 阻值变大输出电压降低,PC3 若内部光敏三极管击穿、漏电时输出电压变低,发光二极管老化则输出电压升高。

Q8、R3、PC4、Q10、R64等组成了(PFC/DC-DC)待机控制电路,当 Q8 击穿时,15V 辅助电源无法关断,主电始终无法关闭。当 Q8 放大能力下降内阻增高可能导致 15V 辅助电源电压输出过低,PFC 和 DC-DC 电路无法启动。另外 PC4 不能进入饱和状态或内阻增加也会导致辅助电源电压下降,PFC 等电路无法正常启动。


R43、D7 等组成了反峰吸收回路,当 D7 漏电可能导致电压过热,开路则会导致 U3 击穿损坏。

 $ZD6^8$ 为欠压保护二极管,若有击穿或者漏电,可能导致欠压保护失效,若开路,则电源不启动,无 5V 和 15V 输出。

3、PFC和DC-DC电路

3.1 PFC 电路原理图

(如附图 3)

3.2 UI/STR-E1555 引脚功能说明

STR-E1555 是一个由前后两个变换器组成的开关电源混合 IC, 其前段是用来消除高次谐波的 PFC 变换器, 后段是一个 DC/DC 变换器。它采用 21 脚的 SLA 封装结构, 内部集成了前段变换器(升压斩波型 PFC)的控制电路以及后段 DC/DC 变换器的控制用 MIC 和 DC/DC 部分的功率 MOSFET (IC 内部)。

1脚 起动电路输入端子

作用: IC 内部, Start Up 端子连接到起动电路和 Vcc 端子(控制部分用电源)。通常 VPFB(DD ON)=3.2V 超过以后,起动电路停止动作。起动电路动作时,以 5.6mA 的定电流为 Vcc 外接的电解电容充电, Vcc>16.2V(typ)时 IC 起动。

2 脚 空

3 脚 PFC 部分 MOSFET 门极驱动信号输出端子

作用: PFC Out 端子输出外接 MOSFET 的驱动信号。该端子的输出特性为 Source 300mA, Sink500mA。根据所使用的 MOS FET 特性,确定是采用直接驱动或者设置外部缓冲电路。

4脚 PFC 部分零电流检出端子

作用: 当从该点流出电流达 200 微安时驱动无输出,这与电流采样电阻 (Rcs) 有关系,该电流还参与 5 脚电压控制 (功率因数调整)。

5 脚 PFC 部分 MOSFET 漏极电流检出端子(过流保护检测)

作用:该端子用来检出 PFC 部分 MOSFET 流过的漏极电流 Id。PFC 部分 MOS FET 的源极一侧,插入耐浪涌特性好的金属膜电阻等器件,将漏极电流 Id 转换成电压。

6 脚 PFC 输出定电压控制信号输入端子、PFC 输出过电压检出端子

7 脚 PFC 部分误差放大器输出及相位补偿端子

作用: COMP 端子是 PFC 控制电路中用于相位校正端子。通过加大外接电容的容量,虽然可以提高电路的稳定,但有必要基于相位的超前或者滞后来进行参数调整。

8、9 脚 PFC、DC/DC 控制电路 Gnd 端子

10 脚 PFC 的乘法器输入端子、外部锁定触发端子

作用: Mult FP是乘法器的输入端子。输入电压先经全波整流,再通过分压输入该端子。该电压波形在使输入电流波形正弦化的过程(功率因素校正过程中)中起到重要作用。

11 脚 PFC 关断延迟调整端子

作用: IC 起动后,对于频繁在 Min 负载~Max 负载之间等状态下进行迅速的负载变动, Min 负载下 DC/DC 进入低频动作时, PFC 反复在起动→停止间切换,变压器等器件可能会发出异常的声音。E1555 在 DC/DC 部分进入低频动作后,在外接电容所产生的延迟时间达到后,才停止 PFC。具体动作是, DC/DC 部分负载减轻,进入低频动作后,通过 IC 内部的定电流电路为 DLP 端子外接的电容充电。DLP 端子电压上升到一定的阈值,DLP 端子电容充电期间内,即使负载急剧变化,PFC 都不会关断,因此不会发出异常的声音。

12 脚 准共振信号输入端子(谷底检测)作用: ZCD 是零电流检测电路的输入端子。 STR-E1555的 PFC 侧采用临界电流检测方式。PFC的 MOSFET 在电感的零电流处导通,流过电感的峰值电流达到由乘法器设定的门坎值时关断。

13 脚 DC/DC 部分过电流检出端子

作用:该端子对 DC-DC 电路的内置 MOS 源极(P17端)电流进行取样,当该脚电压超过 0.6V 时 DC-DC 电路进入过流保护状态,停止输出。

14 脚 DC/DC 部分定电压控制用信号输入端子

作用:DFB 端子是DC/DC 部分用作定电压控制的反馈端子。通常由光耦来进行反馈。

15 脚 IC 驱动用电源端子

17 脚 DC/DC 侧内藏 MOSFET 源极端子

作用: E1555 的 DC/DC 转换电路 MOSFET 内藏。DC/DC 的过电流设定采用和 CS 同样的检出方式。首先在源极串联检出电阻。以此将漏极电流 Id 变换成电压信号。在这个中,为了避免导通时产生浪涌电流冲击导致电路不稳定,插入了一个 CR 滤波器,但 CR 滤波器的时间常数不能过长,否则可能会延缓电流检出,导致保护过迟、MOS 管击穿等后果。

18、19 脚 空

20 脚 DC/DC 电路内藏 MOSFET 漏极端子 (剪脚)

21 脚 DC-DC 电路内藏 MOSSFET 漏极端子

3.3 PFC 电路工作流程与主要外围器件作用

3.3.1 PFC 电路工作流程

当 U1 的 P1/P15 加上电源后, PFC 电路的 P3 端 (PFC 部分 MOSFET 门极驱动信号输出端子) 开始输出激励信号,控制 Q1 进入导通状态,此后 T2 的 2-3 绕组将谷底检测信息送回 P4 端 (PFC 部分零电流检出端子) P4 内部电路及时动作调整 PFC 激励信号波形,T1 输出的电压经 D2 整流,由 R20、21、22/R23 分压取样,把反馈电压送到 P6 端 (PFC

输出定电压控制信号输入端子、PFC 输出过电压检出端子)控制激励信号占空比,从而实现 PFC 电路输出稳压。同时 P10 端送入一个市电整流后的参考电压给内部乘法器电路,参与 PFC 电路工作波形控制,实现 PFC 校正。P5 外接过流保护取样电阻 R9 把 PFC 过流信息反馈到 P5 端,随时监控过流情况,当 R9 上压降达到 0.65V 以上时,PFC 电路过流保护动作,输出截止。P6 端还兼有过压保护检测的功能,当输出反馈电压达到约 3.2V时,PFC 电路停止输出。

3.3.2 PFC 电路主要外围器件作用

P1 端为启动供电端, 无 15V 电源输入, STR-E1555 不能启动。

注: 在本电源中,U1 的 P1 和 P15 辅助供电端电压随电源输出负载水平升高而降低,故该辅助电源的升高可以作为辅助判断 U1 是否进入过压保护状态的依据。若 P10 端过压保护电路动作,则此供电电压会升高到约 19V,而正常工作时,该辅助供电端电压为14.5V(模拟试验时接入约 30W 负载测得的数据)。

P3 为激励信号输出端,外接驱动耦合电阻、激励缓冲管 Q2 和反峰泄放控制管 Q3,当 R15 阻抗变大到一定程度和 Q2 性能不良时,激励信号的幅度可能发生改变,从而导致 Q1 因激励不足、损耗过大而损坏; Q3 是 Q1 能否及时截止的关键,若 Q3 击穿则 Q1 不能工作,若 Q3 回路开路,则会导 Q1 击穿损坏。

P4 为 PFC 凝电流检测电压输入端,外接取样电阻和取样绕组,若 C7、R8 开路, PFC 效率会降低,若 C7 击穿 PFC 电路会发生过载保护电路误动作而无输出。

P5 为过流保护电压输入端,当外接电阻 R9 阻值变大可导致 PFC 过流保护电路提前动作而无输出。C11 为抗干扰电容,若开路可能导致 PFC 过流保护误动作,而带负载能力差,若击穿 PFC 过流保护不动作,可能在过载时损坏电源。

P6 为 PFC 稳压反馈电压输入端,外接取样分压电阻 R23 若阻值变大,则 PFC 输出电压降低,R20~22 变质,则输出电压升高;C19 为过压保护动作延迟(抗干扰)电阻,若开路会导致过压保护提前,电源无输出,若漏电,可能导致 PFC 输出电压升高。

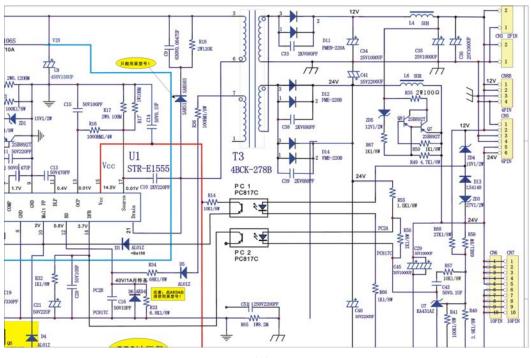
P7 外接相位补偿电容, 其开路电路稳定性变差, 短路不工作

P10 为 PFC 的乘法器输入端子、外部锁定触发端子(过压保护), 若 D4/D3、外接电容 C17、R4、R5、R6 任一开路,都将导致 PFC 电路过压保护误电路动作——PFC、DC-DC 均 无输出电压,任意一个二极管导通,PFC 和 DC-DC 电路同时进入保护锁定状态。

P11 为 PFC 关断延迟调整端子,外接动作延迟电容 C13,若其开路,PFC 电路会出现反复在起动→停止间切换,输出不稳定。若短路,将导致保护不动作,损坏 U1。

3.4 DC-DC 电路工作流程与主要外围器件作用

3.4.1 DC-DC 电路原理图


(如附图 4)

3.4.2 工作流程

当电路通电后,U1 的 P15 端 VCC 正常后,内部 DC-DC 转换电路开始工作。T3 的 3-6 绕组开始有电流流过,此后副边绕组感应电压经 D12、14 整流滤波,由 R58/40、U7/PC2 等组成的误差取样反馈电路,把输出电压变化信息反馈到 U1 的 P14 端,实现 DC-DC 稳压输出。在 STR-E1555 的工作模式当中,准共振模式下,必须对电压共振进行底部检出,加入延时后导通。T3 的 1-7 绕组将谷底检测电压信息反馈到 P14 端,实现电源的准共振模式工作(BD 端子的输入阈值电压是 0.76V(typ)如果该端子的输入信号波形低于此阈值时,IC 从准共振

动作进入 100KHz 的 PWM 模式)。U1 的 P13 端为 DC-DC 过流保护控制电压输入端,当该脚电压达到 0.6V 以上时,DC-DC 电路进入过流保护状态。

由于 DC-DC 电路输出稳压取样点设计在 24V 上,开机瞬间由于 24V(背光电路工作时序要求背光后点亮)负载很轻,而 12V 负载较重,可能导致 12V 电源瞬间输出电压严重下降,为此,电源设计有一个由于 ZD5、Q7、Q8、R35 等组成的临时 12V 电源补偿电路,当 12V 电源低于正常值后,Q7、Q8 导通,24V 经电阻 R35 向 12V 负载电路供电,由于 ZD5 的取值为12V,所以当 12V 电源电压达到 12V 时,Q7 截止,电源互不干扰。

(图4)

3.4.3 主要外围器件作用

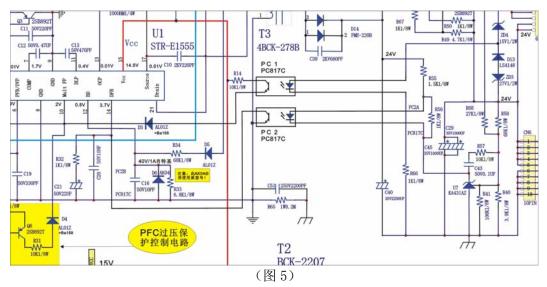
P12 外接电容 C16/D6 若击穿或者漏电,DC-DC 工作模式会改变,R34 开路会导致 DC-DC 电路效率下降或 MOS 管损坏。

P13 端电压超过 0.6V 时 DC-DC 进入过流保护状态。该脚外接电阻为 DC-DC 过流保护取样耦合电阻和抗干扰电容,电阻变质将导致过流保护提前动作,C15 开路可能导致过流保护电路误动作,击穿将导致过流保护电路不动作或者动作延迟。

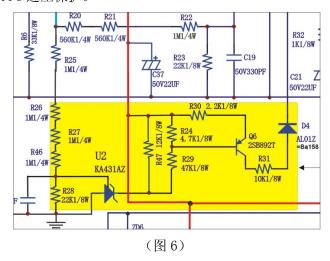
P14 外接 DC-DC 稳压取样反馈电路器件,外接电容击穿或漏电将导致输出电压变低,PC2 老化,或者取样分压电阻 R58 阻值变大会导致输出电压升高,严重时导致过压保护,DC-DC 和 PFC 电路同时停止工作(PFC 输出电压为 300V, DC-DC 输出电压为 0V,)

P17 为内部 MOS 管源极,外接过流保护取样电阻,此电阻变质将导致过流保护电路提前动作,轻者电源尖叫输出电压低,重者电源无输出、P1/P15 端的辅助供电电压拉低(输出负载严重短路导致的 DC-DC 电路过流保护动作将直接拉低辅助电源供电。过流保护动作时,实测辅助电源电压仅为 0. 8~2V,但副电源其他绕组输出电压正常,这是该电源过流保护电路动作时特有的现象)!

注 1: 本电源的 PFC 电路在负载低功率的情况下,不工作。即在不接 12V/24V 负载或者 负载低于 30W 的时候,PFC 电路不工作, DC-DC 电路输入电压为市电整流滤波后的电压(约 300V)。以上为试验测试数据,该电源 PFC 动作负载功率要求相关参数尚无官方文献。试验时,在 12V 输出端接 15 欧、24V 输出端接入 51 欧电阻一个,PFC 电路不启动。再试将 24V


输出端模拟负载电阻减小到 25.5 欧, PFC 电路正常启动,输出电压为 380V。

注 2: STR-E1555 的 PFC 侧采用临界电流检测方式。PFC 的 MOSFET 在电感的零电流处导通,流过电感的峰值电流达到由乘法器设定的门坎值时关断。当线圈副边 Ns 的电压下降到门坎值以下时,ZCD 间接检测出电感的电流,判断其过零。当 VZCD 达到 VZCD(th) =1.6(typ)时,才可以判断为进入关断区间,当电压减小到 VZCD(th)-VZCD(His)以下后,再次导通。为了防止误动作,设置了 0.11V 的滞环。ZCD 内部有两个过电压保护功能。6.5V 防止了该端子电压过高:反向振荡电压下限设在 0.62V,防止电压过低。


3.5 过流过压保护电路工作流程与主要外围器件作用

本电源设计有完善的过流过压保护电路:

DC-DC 输出过压保护: (如附图 5) 由 ZD3、ZD4、PC1 等组成了过压保护取样反馈电路,当输出电压升高导致 ZD3、ZD4 之一导通时,光耦 PC1 内部发光管发光增强,光敏三极管导通,D5 导通,将过压控制电压加到 U1 的 P10 端,U1 停止工作,PFC、DC-DC 电路同时停止工作。

PFC 输出过压保护:(如附图 6)由 $R25^2$ 29、R46/47、U2、Q6 等组成了 PFC 输出过压保护取样控制电路,当输出电压升高使得 Q6 导通 D4 导通时,P10 内部过压保护电路锁定,实现 PFC 过压保护。

PFC 过流保护:由 U1P5 内部电路和外接取样电阻 R9 等组成,当 R9 上的压降达到 0.65V 以上时 PFC 电路进入过流保护状态。

DC-DC 过流保护: U1 的 P13 外接过流保护电阻,当该脚电压达到 0.6V 以上时,DC-DC 电路进入过流保护状态。

三、常见故障检修流程

(如图7)

(图7)

四、电源检修注意事项

- 1、本电源靠近交流输入接口的一侧的三个散热片均带 220V 市电。检修测量时谨 防触电!使用示波器测量波形必须加隔离电容或隔离变压器,否则会导致电网短路和 仪表损坏!
- 2、本电源 PFC 电路输出电压近 400V, 且工作电流很大。对滤波电容的安全容限要求很高,故不得使用任何普通国产电容代替 PFC 主滤波电容,否则可能导致火灾!
- 3、严禁在脱开过流过压保护控制回路的情况下,将电源接入电视机开机测试——输出电压异常升高可能导致屏模组损坏!若必须做在路测试,则必须保证在过

流、过压保护电路工作正常的情况下进行!

- 4、检修测量前无论电源能否启动,均需对 C8 做放电处理。放电不得采取导线直接短路法放电(直接短路放电瞬间冲击电流过大,可能导致电容内部导线开路、打火——引发火灾、电路 MOS 管或 IC 等敏感器件损坏等严重后果),应采取在电容的两端并联阻值大于 300 欧、功率大于 10W 的电阻进行放电(比较简单的方法如:拿电烙铁的插头在电容引脚上触碰数次放电)。
- 5、本电源发生 DC-DC 输出短路引起过流保护时,15V 副电源输出电压会变得只有不超过 2V,此时拔掉电源插头、短时间再次通电仍无法退出保护状态。若要电源再次启动,必须对 C8 做放电处理。
- 6、本电源 DC-DC 输出电路整流二极管均为肖特基二极管,其反向恢复时间为 n 秒级,其他普通二极管或快恢复二极管均不能用于替换! 另外,本电源使用的一些快恢复二极管在创维其他产品上很少使用,不得已时可以相同参数其他二极管代换,但 D6 必须使用原型号肖特基二极管,否则会导致严重后果,具体参数见原理图上的标识。
- 注: 肖特基二极管是以金属和半导体接触形成的势垒为基础的二极管,简称肖特基二极管(Schottky Barrier Diode),是一种低功耗、超高速半导体器件。具有正向压降低(0.4-0.5V)、反向恢复时间很短(10-40纳秒)。肖特基二极管多用作高频、低压、大电流整流二极管,如液晶彩电二次电源的整流,高频电源整流、续流,保护二极管等。也有用在微波通信等电路中作整流二极管、小信号检波二极管等。肖特基二极管的正向压降 VF 比较小。在同样电流的情况下,它的正向压降要比其他快恢复二极管小许多,但它也有一些缺点:耐压比较低,漏电电流稍大。

快恢复二极管是指反向恢复时间很短的二极管(5us 以下),工艺上多采用掺金措施,结构上有采用 PN 结型结构,有的采用改进的 PIN 结构。其正向压降高于普通二极管(1-2V),反向耐压多在 1200V 以下。从性能上可分为快恢复和超快恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在 100 纳秒以下。

7、附图所示参考电压为当电源全部空载情况下,强制(ON 接+5V 电源)启动电源,用 VC980D 数字万用表测得的参考电压。因副电源稳压取样点设在 5V 上,当 5V 空载时,原边的各绕组输出输出电压变化不能得到及时纠正(下降),故辅助电源输出电压只有约 15V。若给 5V 电源接入约 500mA 负载电流,正常工作时的辅助电源电压会高于 15V(约 17.5V)。另:由于仪表频响特性和采样率等技术指标限制,与实际工作电压有较大出入,仅有开关控制电压,启动供电(Vcc)、欠压保护端的电压比较接近真实值,其余电压仅供参考!

TVisi 彩电维修资料网 http://www.tv160.net