# 26 LG 背光板原理



# 一、电路简介

- **Ø** 本背光板适用于 LG LC260W01(A5)(K6) 屏
- Ø 采用单背光板驱动
- Ø 采用 OZ976TN (相位控制陈列)加 OZ972GN (功率控制)
- Ø 设有开路、过流、过压保护

## 二、电路原理

#### 1. 开关机原理

整机开机,电源板启动给背光板供电,如图 1,24V 经 CN1 送给 Q2 的 S 极,同时经 F1~F7 送到 Q101、Q102 及各 MOS 管,再有就是送到 IC1 的 47 脚作欠压检测,当主板 ON/OFF 通过 CN1 送来时,Q4 导通,Q2 也导通得到 VCC1,通过 IC11 稳压后得到 VCC2,这两电压分别给 IC2、IC12、IC1、IC10 供电,另 ON/OFF 信号通过 R46、R47 送到 IC1 的 40 脚始能脚,这时背光板已完成初步开机步骤!当 IC1 满足以下工作条件即可进入工作:

- 1)4、5、6 脚正常供电
- 2)40 脚使能信号
- 3)44 脚输入选择信号
- 4)47 脚内部的欠压锁定保护电路非欠压锁定

IC1 工作后其 3 脚输出 ENA PP 信号到 IC2~IC8 的 6 脚, 46 脚输出基准电压到 IC2~IC8 的 2 脚, 28 脚输出低频 PWM 信号到 IC2~IC8 的 10 脚, 34 脚输出信号到 IC2~IC8 的 8 脚, 这样 IC2~IC8 在供电正常的情况下也进入工作状态,之后 IC2~IC8 的 15、14、16、13 脚输出驱动信号到 DC-AC 变换电路, 背光板进入工作状态。

待机同理,主板待机时,关闭 ON/OFF 信号,Q4 截止,VCC1、VCC2 供电断开,IC1 的始能脚为低电平,背光板进入待机状态。

#### 2.保护原理

### 1)过流保护

如图 2,主要由 D102、D103、Q103 组成, 其通过 CN9、CN10 连接到灯管的另一端, D103整流, R113、R110、R117 分压后送到 IC2 的 10 脚电流反馈脚, 另一路经 D102 整流 R113、R114分压再经 D104 降压整流后送到 Q103 的栅极, 通过控制 Q103 的导通与否从而来控制 IC2 的 10脚电压达到保护的目的。

### 2)过压保护

如图 2,电路主要由 D101、R108、R110、R107、R109 组成,当 T1 或 T2 的初级电压升高时,其次级感应到的电压也会升高,这样 D101 整流后的电压亦高,经电阻分压后送到 IC2的 9 脚,当电压大于其设定值时保护。

# 三、 芯片介绍

#### 1.IC1/OZ976TN

| 引脚 | 功能     | 功能          | 引脚 | 功能    | 功能             |
|----|--------|-------------|----|-------|----------------|
| 1  | NC     | 空脚          | 25 | NC    | 空脚             |
| 2  | NC     | 空脚          | 26 | NC    | 空脚             |
| 3  | ENA PP | 始能输出        | 27 | L1    | 低频 PWM 信号      |
| 4  | VDDA2  | 电源          | 28 | L0    | 低频 PWM 信号      |
| 5  | VDDA   | 电源          | 29 | GNDD  | 数字地            |
| 6  | VDDD   | 电源          | 30 | GNDA  | 模拟地            |
| 7  | OSCA   | 外接 4M 晶振    | 31 | GNDA2 | 模拟地 2          |
| 8  | OSCY   | 外接 4M 晶振    | 32 | REF   | 基准电压输出         |
| 9  | VSYNC  | 外部同步信号输入    | 33 | CLK   | 背光板工作时钟        |
| 10 | TALK   | OZ972 的反馈信号 | 34 | CT    | 设置工作频率的电容      |
| 11 | NC     | 空脚          | 35 | NC    | 空脚             |
| 12 | NC     | 空脚          | 36 | NC    | 空脚             |
| 13 | NC     | 空脚          | 37 | NC    | 空脚             |
| 14 | L11    | 低频 PWM 信号   | 38 | POL   | 选择调光电压极性       |
| 15 | L10    | 低频 PWM 信号   | 39 | IND   | 选择 OZ972 保护模式  |
| 16 | L9     | 低频 PWM 信号   | 40 | ENA   | 始能输入           |
| 17 | L8     | 低频 PWM 信号   | 41 | RT    | 设置工作频率的电阻      |
| 18 | L7     | 低频 PWM 信号   | 42 | RT1   | 设置开启频率的电阻      |
| 19 | L6     | 低频 PWM 信号   | 43 | LCT   | 设置内部 PWM 频率的电容 |
| 20 | L5     | 低频 PWM 信号   | 44 | SEL1  | 灯数选择           |
| 21 | L4     | 低频 PWM 信号   | 45 | SEL0  | 灯数选择           |
| 22 | L3     | 低频 PWM 信号   | 46 | VDIM  | ADC 电压调光控制     |

更多彩电维修资料请到 http://www.tv160.net 《彩电维修资料网》查询吧!

| 23 | L2 | 低频 PWM 信号 | 47 | VINS | 输入电压检测 |
|----|----|-----------|----|------|--------|
| 24 | NC | 空脚        | 48 | NC   | 空脚     |

### IC13/LM393

| 引脚 | 功能   | 参考电压(V) | 引脚 | 功能   | 参考电压(V) |
|----|------|---------|----|------|---------|
| 1  | 输出   | 1.13    | 5  | 同相输入 | 5.6     |
| 2  | 反相输入 | 2.06    | 6  | 反相输入 | 6.51    |
| 3  | 同相输入 | 3.27    | 7  | 输出   | 17.7    |
| 4  | 地    | 4.0     | 8  | 电源   | 8.23    |

#### IC2~IC8/OZ972GN

| 引脚 | 功能    | 功能        | 引脚 | 功能    | 功能          |
|----|-------|-----------|----|-------|-------------|
| 1  | VDD   | 电源        | 9  | OVP   | 输出电压检测      |
| 2  | REF   | 基准电压输入    | 10 | FB    | 电流反馈        |
| 3  | CT    | 背光板工作时钟   | 11 | CMP   | 错误输出        |
| 4  | CLK   | 设置工作频率的电容 | 12 | GND   | 地           |
| 5  | TALK  | 关断指示      | 13 | PDR-C | P 沟道 MOS 驱动 |
| 6  | ENA   | 始能输入      | 14 | NDR-C | N 沟道 MOS 驱动 |
| 7  | CTIMR | 点灯时间设置    | 15 | PDR-A | P 沟道 MOS 驱动 |
| 8  | SST   | 软启动       | 16 | NDR-B | N 沟道 MOS 驱动 |

# 四、 故障实例

### 1. 故障现象: 不亮

故障分析: 遇此故障首先考虑的是整板 MOS 管有无短路现像,供电有没有送到,ON/OFF 信号有没有送到,芯片 OZ976TN 和 OZ972GN 的工作条件是否正常(供电、使能、基准、振荡、软启动),当然,出现此类故障的多数都出现在供电与主控芯片上。

故障检修: 首先测得板上的 MOS 管无击穿与短路,通电后测 24V 供电有送到背光板,测 CN1 上使能信号(4.5V)也送到,测 VCC1与 VCC2发现 VCC2 无电压,排除后级短路现象,怀疑 IC11损坏,试换之,开机 OK!