TN 机芯介绍

■技术工艺部 张庆辉

▶ 机型概述:

TN#系列(包含 TN2985、TN3483 等)机型简介:该机型是一款性价比较高的三行频逐行电视,采用了 RENESAS 公司的超级单片 Idreama-p1 方案(即 N201),包括了解码、16 位 MCU、预视放、行场处理、AV 开关等五部分,其专利技术 PXG-4 实现了隔行/逐行处理。主要接口有:两组 AV 输入、一组 S 端子输入、一组 AV 输出、一组分量输入,可支持 480i、576i、480P、576P、1080i/50HZ、1080i/60HZ 等格式。

▶ 工作原理介绍:

一、 开关电源:

TN 机型的开关电源采用三肯公司的它激型开关电源厚膜 IC,外围元器件少、电路简洁、可靠性高、输出功率大,具有完善的保护功能。

STR-G9656 有五个引脚:

- ①脚: 300V输入,内接开关管 D极。
- ②脚:同接 VMOS 开关管 S 极,过流保护取样端。
- ③脚:接地。
- ④脚: 电源供电脚: 启动端, 过压、欠压保护脚。
- ⑤脚: B+稳压控制端, 过流保护端, 延迟导通控制。

1、开关电源的启动过程:

市电 220V 交流电经 X601 插座输入,由 T501、T502 及其周边元件组成两级电源高频滤波器,其作用是滤除市电中叠加的各种干扰成分,防止市电中的干扰脉冲影响开关电源的正常工作,同时吸收开关电源工作是产生的高频干扰脉冲去污染电网。经过 T501、T502 滤除干扰成分后的市电经过 D501、C516 桥式整流滤波得到约 300V 的直流电压作为它激式厚膜块 STR-G9656 内部开关管的工作电源,市电的交流电压另一路经启动电阻 R509、C517、桥式整流块 D501 内部的其中一个二极管进行半波整流,在 STR-G9656 的 4 脚开始建立电压,当 4 脚的电压达到 17V 的时候,开关电源开始起振,因为启动电阻 R509 的阻值较大,不足于维持 STR-G9656 启动后的供电电流,这时候 STR-G9656 的 4 脚供电主要由开关变压器的①③绕组输出的开关脉冲经过 R514、D508、C517 整流滤波,提供给 STR-G9656 的 4 脚稳定的工作电压,开关启动,进入正常的工作状态。

2、B+电压的稳压控制:

稳压控制电路由取样电路 R528、R527、RP501,误差放大器 V505,e 极接基准参考电压 D519 (6V 稳压管),光耦 N502 和 N501⑤脚等电路组成,当某种原因使 B+电压上升(如暗背景的图像),取样电路 R528、R527、RP501 的取样电压也随之升高,V505 的 b 极电压

升高,因 V505 e 极接 D519(6V 稳压管)产生的基准参考电压不变,所以 V505 的 Ib 电流加大,IC 电流也增大,即 V505 的导通程度加深,流过光耦 N502 内的发光二极管电流加大,发光量增强,光耦 N502 热地部份的 ce 极的 Ic 电流也变大,STR-G9656⑤脚的电压上升,STR-G9656 内部的开关管导通时间减小,开关变压器 T503④⑤绕组(储能绕组)存储的电磁能降低,因此次级整流滤波后的电压也降低,最终使 B+回落在设计的稳定范围内,如果B+电压下降,那么稳压过程以上述的相反。如果 B+取样误差稳压电路失控(如 N502、V505、D519、R528 开路)使 B+输出电压升高,STR-G9656④脚的电压也会随之升高,当 STR-G9656④脚的电压升高到 22.5V,持续 8us、STR-G9656 将执行过压保护。从而停止开关电源的振荡,使 B+电压输出电压为 0V,该保护具有锁存功能,要断市电后重新开机,开关电源才可以重新起振。

3、电源厚膜 STR-G9656 的保护:

A) 过压保护: STR-G9656④脚的电压如果超过阀值 22.5V,持续 8uS,开关电源将停止振荡,具有锁存功能,需断电后,才能重新起振。

如果市电 220V 电压升高经 R509、C517 半波整流后的电压也会升高,超过 22.5V,N501 同样执行过压保护。

- B) 过流保护:由过流取样电阻 R505、R507、STR-G9656⑤脚组成,当开关电源的次级各电路负载过重或短路,STR-G9656内部开关管的 ID 电流将明显增大,流过 R505 的电流增大,经 R505, I/V 转换,由 R507送到 STR-G9656⑤脚的锯齿波电压幅度也增大,开关管的导通时间将减小,次级各供电电压均明显降低,过流保护没有锁存功能。
- C) 过热保护: 当 STR-G9656 的工作环境温度过高,超过 145° C 持续 8us, STR-G9656 将执行过热保护,停止开关电源的振荡,具有锁存功能,需断电后,使 STR-G9656 的温度降下来,才能重新启动。因此更换 STR-G9656 与散热片之间均匀涂上导热硅脂,螺丝必须拧紧,保证接触良好,以免散热不良,引起过热保护。
- D)欠压保护: 开关电源起振后, 若是因某种原因 (如次级供电小电源存在短路), 使 STR -G9656④脚的电压下降, 低于 10V, STR-G9656 的欠压保护电路将动作, 使开关电源停振, 具有锁存功能, 实际上也是一种间接的过流保护。

4、开关电源的延迟导通电路:

由 D511、R513、C521、D507 构成,D507 是起与过流保护电路的隔离作用。在 STR-G9656 内部开关管截止的时候,开关变压器 T503 的次级各整流二极管导通,开始释放储能绕组储存的电磁能,能量释放结束后,T503⑤④绕组的续流感生电动势与 C513 产生串联谐振,如果在谐振产生后的 1/2 周期(即 C513 的端电压最低时)使 STR-G9656 内部的开关管导通,开关管和变压器的工作损耗将最小,因此加入 D511、R513、C521、D507 在开关管截止的时候,由 R513、D511、C521 整 流滤波得到一个微小的直流电压,经 D507 加到 N501 的⑤脚维持一个高电位,使 STR-G9656 的开关管可靠截止。随着 C521 经 D507 放电,

STR-G9656⑤脚的电压降低于 0.73V。STR-G9656 才重新导通,只要调整 D511、R513、C521 的参数,即能改变延迟导通时间,该电路失效将使开关变压器、厚膜 IC、N501 工作时温度上升(损耗加大),开关变压器发出"吱吱"的响声。原因是: 开关变压器的铜损、铁损加大,电感量下降,开关管的 ID(漏极电流)加大,并且引起振荡频率不稳定。5、遥控开/关机控制:

在遥控关机(待机)的状态下,N201:R2J10030-F00FP的 67 脚输出高电平,使 V508饱和导通,由 D522、D523组成待机控制支路经 V508ce 极接地,待机控制电路起作用。D522(8.7V)的稳压管反向击穿,N502的发光二极管发光量加大,厚膜块 STR-G9656⑤脚的电压上升,开关管的导通时间变得很短,开关变压器次级各供电电压均下降,开关电源处于弱振荡状态,减小工作损耗,这时候整机进入遥控关机(待机)状态。

在待机状态下 N201:R2J10030-F00FP 的 67 脚输出高电平还使 V514 饱和导通,将 V509(12V-2 输出的扩流三极管)b 极的 12.7V 偏置电压对地旁路,使 V509 在待机状态下处于截止状态, V509 无 12V-2 的电源输出。因 V509 无 12V-2 的电源输出,三端稳压器 N504 (AN7809) 也没有 9V 的电压输出,这样进一步减少了整机在待机状态下开关电源的功耗。6、B+主电源输出的过流保护:

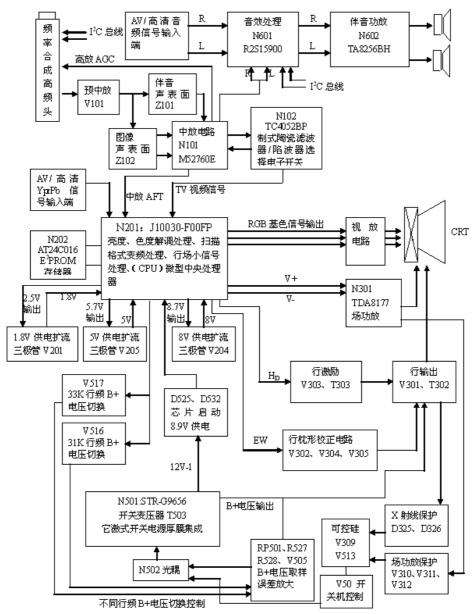
由 R357、R356、V308、D315 等元件组成 B+过流保护,当行输出电路出现短路或行负载加重,B+电流将加大,流过 R357 (0.39Ω) 的取样电阻的电压降急剧升高,当达到 V308be 极的正向导通电压,V308 导通,B+电压通过 V308 的 ec 极使 D315(11.6V)稳压管反向击穿,触发 V309 单向可控硅导通、V513 截止、V513 的 C 极变为高电平,通过 D529、R536 使 V508 导通,开关电源进入待机状态,停止了行场扫描电路的工作,对整机进行保护。7、X 射线保护:

T302 第④⑨脚绕组是灯丝电源的供电绕组,该绕组还通过 R308、D302、C326 整流滤波得到一个直流电压,该电压的大小间接反应了行逆程脉冲幅度的大小(即 CRT 阳极高压的大小),如果行逆程电容开路、B+的电压过高、行频过低,行激励脉冲异常使行逆程的幅度太高,C326 的电压也会随之升高,经 R323、R327 组成的分压电路,分压后的电压超过D311(18V)稳压管的反向击穿电压时,D311 反向击穿,V309 单向可控硅触发导通,使 V513的 极电压为 0V,V513 截止,C 极输出高电平,经 D529 使开关电源进入待机状态,停止行场振荡,保护行扫描电路。

二、 信号流程:

天线接收的射频信号 RF 进入高频头,经高放和混频获中频信号 IF,再经 V101 预中放后送声表面波 Z102 进行中频滤波,获得较理想的中频特性,然后送入 N101 (M52760E)进行中放、锁相环 VC0 及同步检波,获全电视信号 VIDEO;同时 IF 经预中放后也送声表面滤波器 Z101 进行滤波,再送入 N101 进行中放并解调出音频信号 (MONO)。

从 M52760E 输出的 TV 视频 VIDEO 与 AV1、AV2、S(Y/C)的视频及 YCbCr/YPbPr 信号均送



往主芯片 N201 (i-DREAMA), i-DREAMA 是一片多功能大规模专用集成电路,它能实现视频选择、箝位、A/D 变换、梳状滤波和彩色解码以及 D/A 变换、隔行/逐行处理、模式变换等诸多处理功能,形成模拟 RGB 信号; RGB 信号再经视放前的预处理,对视频信号进行模拟量调节、自动亮度/对比度控制和自动白平衡处理,然后输出已处理的 RGB。RGB 经视频放大后驱动显象管显象。另一方面,N201 还具有行场偏转处理功能,由它处理并输出行场驱动信号,分别经放大后送至 CRT 推动偏转线圈进行行场扫描。

从 M52760E 输出的 TV 音频信号送到音频处理器 N601 (R2S15900SP)。YCbCr/YPbPr、AV1及 AV2/S 的音频信号 L/R 也送到音频处理器 N601。输入到 N601 的几路音频信号经选择切换和音质处理后,一路作为 AV OUT 的音频输出,另一路送到音频功放 N602 (TA8256BH),经放大的音频信号供扬声器发音。整机的工作由 N201(i-DREAMA)内部附带的 MCU 来控制,它通过 IIC 总线与高频头及 R2S15900SP 等连接,並控制它们进行工作。

三、整机原理框图

▶ 调试说明及维修菜单数据

1、说明

- 1. 1 本机芯内的EEPROM(N202 M24C16)上机前先按标准样机数据进行拷贝,必要时再进行"工厂调整"。如果直接使用空白EEPROM,必须先对 I^2 C数据进行预置,之后才能进行其它常规调试。有关工厂调整方法,参照"工厂调整模式"。
- 1.2 本调试说明为TN#机芯共用,不同的型号整机所要求的B+在MX中注明。
- 1.3 本调试说明中,黑斜体为屏幕显示OSD,双引号""内为遥控器或本机按键。

2、工厂调整模式

2.1 进入工厂调整菜单

按工厂调试遥控器上的"工厂菜单"键,屏幕上即出现工厂调试菜单。或者按组合键 "声音模式"→"常看频道"→"宽屏幕"→"伴音制式"。

2.2 工厂菜单操作

按"△"或"▽"键,可向上或向下选择子菜单,按""或"""进入子菜单。 按"△"或"▽"键,可向上或向下选择调整项,按""或""可进行调整项数值调整。

2.3 退出工厂菜单

反复按"MENU"键,退出调整项、子菜单、工厂调整菜单。

3、调整方法

- 3.1 B+电压调校
 - a) 确定交流电源220 V/50 Hz (宽电源地区)。
 - b) 连接数字电压表至B+测试点TP8与GND,接收D8信号,图像控制置"标准"状态,调整RP501使B+(测试点TP3与GND间)电压为135 V±0.3 V(29″三星PF纯平管,该值视不同显像管而不同,使用其他CRT,B+值在MX中注明)。
 - c) 在STAND BY关机情况下, B+电压为12 V左右。

3.2 AFT调整

- a) 确定高频头TUNER101的IF输出脚与印制板焊盘分离。
- b) TP6接5 V直流稳压源,TP7接9 V直流稳压源。
- c) 将频率为38 MHz,幅度为90 dB的信号输入TP3,PT4接地。
- d) 用无感螺丝刀调节中周L111, 同时监测TP5的对地电压,直至TP5的电压为2.5 V。
- e) 将频率改为38.1 MHz,测量TP5电压是否<2.5 V,将频率改为37.9 MHz,测量TP5电压是否>2.5 V,否则重新调节中周直至达到这种状态为止。
- f) 将TUNER101的IF输出脚与印制板焊盘焊好。

3.3 AGC电压调整

a) 接收60 dB分裂场(或灰度)信号。

- b) 调节电位器RP101,同时监测C101正极的对地电压,直至电压为4 V。此时图像噪波点应基本消失。
- 3.4 聚集调整
- 3.4.1 接收D35信号,图像模式置"标准"状态。
- 3.4.2 调整FBT上聚焦电位器, 使屏幕上B区聚集最佳。
- 3.5 帘栅压、TV白平衡调整
- 3.5.1 接收D8分裂场信号,图像模式置"标准"状态。
- 3.5.2 在工厂调试菜单中,选择Whitecut菜单,固定CUT OFF B项的值不变(如设为100), 粗调CUT OFF R和CUT OFF G值,使白平衡基本正常。
- 3.5.3 图像模式置"柔和"状态,精细模式置为"开"进入工厂菜单"Whitecut"项选择 "Blank line",按""成水平亮线调节SCREEN电位器,使其微亮,按""退出。
- 3.5.4 在工厂调试菜单中,选择Whitecut子菜单,细调白平衡(色温: 12000K±8MPCD X=0.270±0.008 Y=0.283±0.008)。
- 3.5.5 接收A12信号,调整Other下V offset顶,使图像白平衡正常。
- 3.6 TV行、场扫描中心调整
- 3.6.1 接收D35信号,在工厂菜单中选择Geormetry菜单,按""进入子菜单,微调"HVCO adj"项,使图像最接近直立。
- 3.6.2 接收D35信号,进入Other下 "AFCI Gain" 项,左右调整使图像最佳。
- 3.6.3 行中心调整

接收G23信号,图像模式置"标准"状态,在工厂调试菜单中,选择Geormetry菜单,按""进入子菜单,微调行中心H phase,使图像行中心与屏幕中心一致。

3.6.4 场中心调整

接收G23信号,图像模式置"标准"状态,在工厂调试菜单中,选择Geormetry菜单,按 ""进入子菜单,微调场中心V phase,使图像场中心与屏幕中心一致。

3.7 TV场扫描调整

接收D35信号,图像模式置"标准"状态,在工厂调试菜单中,选择Geormetry菜单,按 ""进入子菜单,调整场幅V-size,使图像上下过扫描为屏幕尺寸的8%。

3.8 TV光栅校正调整、行幅度调整

接收PAL白色方格信号,图像模式置"标准"状态,在工厂调试菜单中,选择Geormetry菜单,调整Pincushion,使光栅畸变最小,调节H-SIZE,使图像左右过扫描为屏幕尺寸的8%。

3.9 如扫描线性失真和光栅几何失真不满足要求,可利用工厂调整菜单进行下列项目调整, 图示见下表。

S-Corr	(场S形校正)
V-line	(场线性校正)
Pincushion	(枕形校正)
Trapezium	(梯形校正)
Parallelog	(平行四边形校正)
Pinbalance	(弓形校正)
Top Corner	(顶部边角校正)
Bottom Corner	(底部边角校正梯形校正)

3.10 最大伴音输出功率

接收D-8信号,将音量调至最大,检查伴音输出功率不小于2×6 W。

3.11 HDTV 白平衡调整及行、场扫描调整

本机支持的HDTV格式和对应的VG848的TIMING号见下表。

YpbPr支持的输入信号格式						
信号格式	VG848的TIMING号					
480I	950					
480P	978					
576I	969					
576P	979					
1080I/50Hz	100					
1080I/60Hz	972					

- 3.11.1 YPbPr白平衡调整
 - a) HDTV YPrPb输入端口输入480P格式8级灰度信号图像模式置"标准"。
 - b) 在工厂调试菜单中,选择Whitecut菜单,细调白平衡(色温: 12000K±8MPCD X=0.270±0.008 Y=0.283±0.008)。
- 3.11.2 480P几何调整
 - a) 行中心调整
 - 1) HDTV YPrPb输入端口输入480P格式白色方格信号图像模式置"标准"。
 - 2) 在工厂调试菜单中,选择Geormetry菜单,微调行中心H-size,使图像行中心与 屏幕中心一致。
 - b) 场中心调整

在工厂调试菜单中,选择Geormetry菜单,微调场中心V phase,使图像场中心与屏幕中心一致。

c) 场扫描调整

在工厂调试菜单中,选择Geormetry菜单,调整场幅V-size,使图像上下过扫描为屏幕尺寸的8%。

d) 光栅校正调整、行幅度调整

在工厂调试菜单中,选择Geormetry菜单,调整Pincushion,使光栅畸变最小,调节H-size,使图像左右过扫描为屏幕尺寸的8%。

e) 如扫描线性失真和光栅几何失真不满足要求,可利用工厂调整菜单进行下列项目调 整,图示见下表。

S-Corr	(场S形校正)
V-line	(场线性校正)
Pincushion	(枕形校正)
Trapezium	(梯形校正)
Parallelog	(平行四边形校正)
Pinbalance	(弓形校正)
Top Corner	(顶部边角校正)
Bottom Corner	(底部边角校正梯形校正)

4. 老化

在工厂菜单中选择"Aging"项,按""键进入老化状态,连续按五下"-/--"键退 出老化状态。

5. 出厂状态预置

在工厂菜单中选择"Shipment"项,按""键即可自动预置如下出厂状态:

- 1) 频道:1
- 2) 彩色制式: AUTO
- 3) 伴音制式: D/K
- 4) 图像模式:标准
- 5) 音效模式: 个人
- 6) 音量: 60
- 7) 高音: +5
- 8) 高音: +5
- 9) 音效: 关
- 10) 清晰度: 8
- 11) 伽玛: 开
- 12) 速调: 开(此功能如果有选择)
- 13) 自动关机: 关
- 14) 蓝屏开关: 开
- 15) 电源记忆: 开
- 16) 彩色提升: 开
- 17) 精细模式: 开
- 18) 色调: 0

电路实测维修数据:

N201: R2J10030-F00FP

引脚	功能	电压值	引脚	功能	电压值
1	控制 N102 选择开关 S1	0.01V	41	R 基色信号输入(未用)	1.18V
2	控制 N102 选择开关 S2	0.01V	42	B 基色信号输入(未用)	2.23V
3	AC-OFF	3.28V	43	SECAM-BELL/TEST (未用)	0.51V
4	声表面 PAL/NTSC 制选择输出	3.25V	44	芯片启动电源输入端	8.98V
5	复位端	3.30V	45	AV1 视频信号输入	2.17V
6	高压补偿输入	1.67V	46	SECAM 制锁相环喇叭(未用)	1.78V
7	自动亮度控制 ABCL 输入	2.26V	47	色副载波信号输出(未用)	2.76V
8	发光二极管控制端(未用)	3.30V	48	行电源+8V 供电	8.22V
9	音频功放静音控制输出	3.27V	49	R 基色信号输出	2.53V
10	空脚	0.60V	50	G基色信号输出	2.37V
11	空脚	0.57V	51	B基色信号输出	2.57V
12	找台 AFT 信号输入	1.68V	52	3.3V 供电	3.30V
13	驱动+8V 供电端	8.22V	53	模/数转换的高电平基准电压	2.03V
14	场激励 V+信号输出	4.02V	54	SVM 扫描速调信号输出	2.53V
15	场激励 V-信号输出	3.68V	55	模/数转换的低电平基准电压	0.99V
16	行 AFC 滤波	2.79V	56	放大器滤波端	1.55V
17	驱动+5V 供电端	4.95V	57	接地	0.00V
18	行驱动脉冲输出	3.71V	58	VRAMP 内部放大器基准电压	1.64V
19	行逆程脉冲反馈输入	0.53V	59	总线接地端	0.00V
20	接地	0.00V	60	接地	0.00V
21	彩色 APC 滤波端	3.37V	61	接地	0.00V
22	外接 4.43MHz 晶振	2.23V	62	I ² C 总线时钟线	3.30V
23	接地	0.00V	63	I ² C 总线数据线	3.30V
24	视频信号输出	3.16V	64	行频 33K 的 B+电压切换控制	0.01V
25	行枕效信号输出	2.96V	65	RDTATE(未用)	0.54V
26	色度信号 C1 输入端(未用)	2.26V	66	3.3V 供电	3.31V
27	亮度信号 Y1 输入端(未用)	2.25V	67	遥控开关机控制	0.01V
28	8.7V 基准电压输出	8.87V	68	行频 31K 的 B+电压切换控制	3.28V
29	TV 视频信号输入	2.59V	69	接地	0.00V
30	+5V 供电端	5.01V	70	MODE-CONT (未用)	0.61V
31	AV2 视频信号输入	2.17V	71	1.8V 供电	180V
32	5.7V 基准电压输出	5.74V	72	键盘信号 KEY2 输入(未用)	0.37V
33	高清 Pr 分量信号输入	1.19V	73	键盘信号 KEY1 输入(未用)	3.29V
34	高清 Pb 分量信号输入	1.19V	74	遥控信号输入端	3.26V
35	高清Y信号输入	2.17V	75	数据发射端	3.30V
36	2.5V 基准电压输出	2.51V	76	数据接收端	0.32V
37	S端子C色度信号输入	2.26V	77	I ² C 总线时钟线(接高频头)	5.06V
38	S端子Y亮度信号输入	2.17V	78	遥控信号输入端	3.26V
39	HSBL/TEST (未用)	4.92V	79	I ² C 总线数据线(接高频头)	5.06V
40	B 基色信号输入(未用)	1.14V	80	S端子识别输入端	3.25V

N101: M52760E 中放处理集成

引脚	功能	电压值	引脚	功能	电压值
1	高放 AGC 延迟调整	2.06V	11	第二伴音中频输入	2.21V
2	中放 AFT 信号输出	2.50V	12	AFT/NP 开关	0.02V
3	高放 AGC 延迟输出	3.04V	13	第二伴音中频输出	2.49V
4	图像中频输入	1.48V	14	中放电源	4.99V
5	图像中频输入	1.48V	15	压控振荡器 (外接中周)	4.08V
6	接地	0.00V	16	压控振荡器 (外接中周)	4.08V
7	第一伴音中频输入	2.40V	17	基准电压输出	4.99V
8	中放 AGC 滤波	2.81V	18	全电视信号输出	2.17V
9	反馈端	2.36V	19	中放锁相环滤波	3.54V
10	音频输出	2.35V	20	均衡滤波端 (未用)	1.65V

N102: TC4052BP(4选1电子开关)制式陷波器/滤波器选择

引脚	功能	电压值	引脚	功能	电压值
1	外接 N 制 4.5MHz 陷波器	2.17V	9	选择控制端 B	4.99V
2	外接 I 制 6.0 MHz 陷波器	2.17V	10	选择控制端 A	4.99V
3	视频输出	1.99V	11	外接 D/K 制 6.5 MHz 滤波器	2.21V
4	外接 D/K 制 6.5 MHz 陷波器	2.07V	12	外接 M 制 4.5 MHz 滤波器	0.01V
5	外接 B/G5.5 MHz 陷波器	2.17V	13	第二伴音中频信号输出	2.21V
6	接地	0.00V	14	外接 B/G 制 5.5 MHz 滤波器	0.02V
7	接地	0.00V	15	外接 I 制 6.0 MHz 滤波器	0.01V
8	接地	0.00V	16	供电端	4.99V

N601:R2S15900 音效处理

引脚	功能	电压值	引脚	功能	电压值
1	基准电压源滤波	4.43V	15	外接去加重电容	8.88V
2	TV的L通道音频输入	4.43V	16	外接去加重电阻	8.89V
3	高清的L通道音频输入	4.25V	17	I ² C 总线数据线	3.30V
4	AV2 的 L 通道音频输入	4.29V	18	I ² C 总线时钟线	3.30V
5	AV1 的 L 通道音频输入	4.28V	19	R 声道音频输出(到功放)	4.44V
6	AV 输出端的 L 音频输出	4.44V	20	R通道的低音提升滤波端	4.44V
7	L通道的高音滤波端	4.43V	21	R通道的低音提升滤波端	4.40V
8	L通道的低音提升滤波端	4.40V	22	L通道的高音滤波端	4.43V
9	L通道的低音提升滤波端	4.44V	23	AV 输出端的 R 音频输出	4.44V
10	环绕声滤波端	4.44V	24	AV1的R通道音频输入	4.30V
11	L 声道音频输出(到功放)	4.44V	25	AV2的R通道音频输入	4.25V
12	接地	0.00V	26	高清的 R 通道音频输入	4.25V
13	空脚	0.00V	27	TV的R通道音频输入	4.43V
14	空脚	0.00V	28	+9V 供电端	8.89V

N602:TA82568H 音频功放

引脚	功能	电压值	引脚	功能	电压值
1	空脚	0.00V	7	开机静音时间控制	0.00V
2	L声道音频输入	2.05V	8	R声道音频功率输出	13.00V
3	接地	0.00V	9	供电电源	27.40V
4	R 声道音频输入	2.05V	10	接地	0.00V
5	静音控制端	0.01V	11	空脚	0.00V
6	纹波滤波端	8.95V	12	L声道音频功率输出	13.10V

N301:TDA8177 场功放

引脚	功能	电压值
1	V-场激励信号反相输入端	1.43V
2	场正程正电源供电端	15.82V
3	场逆程升压开关	-13.63V
4	场正程负电源供电端	-14.74V
5	场功率输出端(输出到场偏转)	0.41V
6	场逆程供电端	15.78V
7	V+场激励同相信号输入	1.44V

N501:STR-G9656 它激式开关电源厚膜集成

引脚	功能		
1	300V 电源输入端,内接大功率绝缘栅型场效应开关管 VMOS 管的 D 极	290V	
2	过流保护的取样端,内接大功率绝缘栅型场效应开关管 VMOS 管的 S 极	0.05V	
3	接地	0.00V	
4	开关电源启动端(大于 17V 开始启动)、正常工作时的供电端、过压保护端(大于 22.5V 在)、欠压保护端(低于 10V)	19.28V	
5	过流保护输入端、B+稳压控制输入端、延迟导通控制端	2.35V	

(该资料由技术信息课陈宏伟收集提供)

